

Error

This shouldn’t be needed! Where is this contents.rst used?

 Python Module Index

 b |
 s

 		 	

 		
 b	

 	[image: -]
 	
 baangt	

 	
 	
 baangt.base	

 	
 	
 baangt.base.ApiHandling	

 	
 	
 baangt.base.BrowserHandling	

 	
 	
 baangt.base.CliAndInteractive	

 	
 	
 baangt.base.CustGlobalConstants	

 	
 	
 baangt.base.ExportResults	

 	
 	
 baangt.base.GlobalConstants	

 	
 	
 baangt.base.HandleDatabase	

 	
 	
 baangt.base.IBAN	

 	
 	
 baangt.base.TestRun	

 	
 	
 baangt.base.TestRunExcelImporter	

 	
 	
 baangt.base.TestRunUtils	

 	
 	
 baangt.base.Timing	

 	
 	
 baangt.base.Utils	

 	
 	
 baangt.katalonImporter	

 	
 	
 baangt.katalonImporter.katalonImport	

 	
 	
 baangt.TestCase	

 	
 	
 baangt.TestCase.TestCaseMaster	

 	
 	
 baangt.TestCaseSequence	

 	
 	
 baangt.TestCaseSequence.TestCaseSequenceMaster	

 	
 	
 baangt.TestCaseSequence.TestCaseSequenceParallel	

 	
 	
 baangt.TestSteps	

 	
 	
 baangt.TestSteps.DropsApp	

 	
 	
 baangt.TestSteps.DropsApp.Login_API	

 	
 	
 baangt.TestSteps.Exceptions	

 	
 	
 baangt.TestSteps.TestStepMaster	

 	
 	
 baangt.ui	

 	
 	
 baangt.ui.ImportKatalonRecorder	

 	
 	
 baangt.ui.ui	

 	
 	
 baangtIA	

 		 	

 		
 s	

 	
 	
 setup	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	add() (baangt.katalonImporter.katalonImport.Groovy method)

 	(baangt.katalonImporter.katalonImport.LocatorObjects method)

 	(baangt.katalonImporter.katalonImport.TestCases method)

 	addTabs() (baangt.katalonImporter.katalonImport.translateGoovy method)

 	
 	analyze() (baangt.katalonImporter.katalonImport.translateObjectDefinition method)

 	anything2Boolean() (baangt.base.Utils.utils static method)

 	ApiHandling (class in baangt.base.ApiHandling)

 	args_read() (in module baangt.base.CliAndInteractive)

B

 	
 	baangt (module)

 	baangt.base (module)

 	baangt.base.ApiHandling (module)

 	baangt.base.BrowserHandling (module)

 	baangt.base.CliAndInteractive (module)

 	baangt.base.CustGlobalConstants (module)

 	baangt.base.ExportResults (module)

 	baangt.base.GlobalConstants (module)

 	baangt.base.HandleDatabase (module)

 	baangt.base.IBAN (module)

 	baangt.base.TestRun (module)

 	baangt.base.TestRunExcelImporter (module)

 	baangt.base.TestRunUtils (module)

 	baangt.base.Timing (module)

 	baangt.base.Utils (module)

 	baangt.katalonImporter (module)

 	
 	baangt.katalonImporter.katalonImport (module)

 	baangt.TestCase (module)

 	baangt.TestCase.TestCaseMaster (module)

 	baangt.TestCaseSequence (module)

 	baangt.TestCaseSequence.TestCaseSequenceMaster (module)

 	baangt.TestCaseSequence.TestCaseSequenceParallel (module)

 	baangt.TestSteps (module)

 	baangt.TestSteps.DropsApp (module)

 	baangt.TestSteps.DropsApp.Login_API (module)

 	baangt.TestSteps.Exceptions (module)

 	baangt.TestSteps.TestStepMaster (module)

 	baangt.ui (module)

 	baangt.ui.ImportKatalonRecorder (module)

 	baangt.ui.ui (module)

 	baangtIA (module)

 	baangtTestStepException

C

 	
 	callTestrun() (in module baangt.base.CliAndInteractive)

 	
 	checkLinks() (baangt.TestSteps.TestStepMaster.TestStepMaster method)

D

 	
 	datetime_return() (baangt.base.Utils.utils static method)

 	decodeHex() (baangt.katalonImporter.katalonImport.TestCases static method)

 	doImport() (in module baangt.katalonImporter.katalonImport)

 	doPDFComparison() (baangt.TestSteps.TestStepMaster.TestStepMaster method)

 	doReplacementOfLiterals() (baangt.katalonImporter.katalonImport.Groovy method)

 	doSaveData() (baangt.TestSteps.TestStepMaster.TestStepMaster method)

 	doTranslate() (baangt.ui.ImportKatalonRecorder.ImportKatalonRecorder method)

 	
 	doTranslateClick() (baangt.ui.ImportKatalonRecorder.ImportKatalonRecorder static method)

 	doTranslategoBackAndWait() (baangt.ui.ImportKatalonRecorder.ImportKatalonRecorder static method)

 	doTranslateLocator() (baangt.ui.ImportKatalonRecorder.ImportKatalonRecorder static method)

 	doTranslateSelect() (baangt.ui.ImportKatalonRecorder.ImportKatalonRecorder static method)

 	doTranslateSubmit() (baangt.ui.ImportKatalonRecorder.ImportKatalonRecorder static method)

 	doTranslateType() (baangt.ui.ImportKatalonRecorder.ImportKatalonRecorder static method)

 	dynamicImportOfClasses() (baangt.base.Utils.utils static method)

E

 	
 	execute() (baangt.TestCase.TestCaseMaster.TestCaseMaster method)

 	(baangt.TestCaseSequence.TestCaseSequenceMaster.TestCaseSequenceMaster method)

 	(baangt.TestSteps.DropsApp.Login_API.Login_API method)

 	(baangt.TestSteps.TestStepMaster.TestStepMaster method)

 	execute_parallel() (baangt.TestCaseSequence.TestCaseSequenceMaster.TestCaseSequenceMaster method)

 	executeDirect() (baangt.TestSteps.TestStepMaster.TestStepMaster method)

 	
 	executeDirectSingle() (baangt.TestSteps.TestStepMaster.TestStepMaster method)

 	executeTestCase() (baangt.TestCase.TestCaseMaster.TestCaseMaster method)

 	exportResult() (baangt.ui.ImportKatalonRecorder.ImportKatalonRecorder method)

 	exportResults() (in module baangt.katalonImporter.katalonImport)

 	exportXLS() (baangt.katalonImporter.katalonImport.LocatorObjects method)

 	extractFileNameFromFullPath() (baangt.base.Utils.utils static method)

F

 	
 	fileHandling (class in baangt.katalonImporter.katalonImport)

 	
 	findFileAndPathFromPath() (baangt.base.Utils.utils static method)

 	findGroovyScript() (baangt.katalonImporter.katalonImport.translateTestCase method)

G

 	
 	getCompleteTestRunAttributes() (baangt.base.TestRunUtils.TestRunUtils method)

 	getConfigFilesInDirectory() (baangt.ui.ui.UI method)

 	getGlobalSettings() (in module baangt.base.CliAndInteractive)

 	getNewSession() (baangt.base.ApiHandling.ApiHandling method)

 	getNextRecord() (baangt.TestCaseSequence.TestCaseSequenceMaster.TestCaseSequenceMaster method)

 	getRandomIBAN() (baangt.base.IBAN.IBAN method)

 	
 	getRowsWithHeadersAsDict() (baangt.base.TestRunExcelImporter.TestRunExcelImporter method)

 	getSequenceByNumber() (baangt.base.TestRunUtils.TestRunUtils method)

 	getSession() (baangt.base.ApiHandling.ApiHandling method)

 	getTestCaseByNumber() (baangt.base.TestRunUtils.TestRunUtils method)

 	getTestStepByNumber() (baangt.base.TestRunUtils.TestRunUtils method)

 	getURL() (baangt.base.ApiHandling.ApiHandling method)

 	Groovy (class in baangt.katalonImporter.katalonImport)

H

 	
 	HandleDatabase (class in baangt.base.HandleDatabase)

I

 	
 	IBAN (class in baangt.base.IBAN)

 	ifQualifyForExecution() (baangt.TestSteps.TestStepMaster.TestStepMaster static method)

 	importClipboard() (baangt.ui.ImportKatalonRecorder.ImportKatalonRecorder method)

 	
 	importConfig() (baangt.base.TestRunExcelImporter.TestRunExcelImporter method)

 	ImportKatalonRecorder (class in baangt.ui.ImportKatalonRecorder)

 	interpretGroovy() (baangt.katalonImporter.katalonImport.translateGoovy method)

L

 	
 	listToString() (baangt.base.Utils.utils static method)

 	LocatorObjects (class in baangt.katalonImporter.katalonImport)

 	
 	logFileContentsHeader() (baangt.katalonImporter.katalonImport.fileHandling method)

 	Login_API (class in baangt.TestSteps.DropsApp.Login_API)

M

 	
 	modifyValuesOfConfigFileInMemory() (baangt.ui.ui.UI method)

O

 	
 	one_sequence() (baangt.TestCaseSequence.TestCaseSequenceParallel.TestCaseSequenceParallel method)

 	openJson() (baangt.base.Utils.utils static method)

 	
 	outputAnalysis() (baangt.katalonImporter.katalonImport.translateObjectDefinition method)

 	(baangt.katalonImporter.katalonImport.translateTestCase method)

P

 	
 	postURL() (baangt.base.ApiHandling.ApiHandling method)

 	prepareExecution() (baangt.TestCaseSequence.TestCaseSequenceMaster.TestCaseSequenceMaster method)

 	
 	prepareKeyValue() (baangt.ui.ImportKatalonRecorder.ImportKatalonRecorder static method)

 	print_args() (in module baangt.base.CliAndInteractive)

R

 	
 	read_excel() (baangt.base.HandleDatabase.HandleDatabase method)

 	readConfig() (baangt.ui.ui.UI method)

 	readContentsOfGlobals() (baangt.ui.ui.UI method)

 	readFile() (in module baangt.katalonImporter.katalonImport)

 	readNextRecord() (baangt.base.HandleDatabase.HandleDatabase method)

 	readTestRecord() (baangt.base.HandleDatabase.HandleDatabase method)

 	readXMLFile() (in module baangt.katalonImporter.katalonImport)

 	replaceAllGlobalConstantsInDict() (baangt.base.Utils.utils static method)

 	replaceAllVariables() (baangt.TestSteps.TestStepMaster.TestStepMaster method)

 	
 	replaceClasses() (baangt.base.TestRunUtils.TestRunUtils method)

 	replaceFieldValueWithValueOfConstant() (baangt.base.TestRunExcelImporter.TestRunExcelImporter method)

 	(baangt.base.Utils.utils static method)

 	replaceGlobals() (baangt.base.TestRunUtils.TestRunUtils method)

 	replaceGroovyLine() (baangt.katalonImporter.katalonImport.translateGoovy static method)

 	replaceLiteralsWithLocators() (baangt.katalonImporter.katalonImport.translateGoovy method)

 	replaceVariables() (baangt.TestSteps.TestStepMaster.TestStepMaster method)

 	returnTestCaseStatus() (baangt.base.ApiHandling.ApiHandling static method)

 	run() (in module baangt.base.CliAndInteractive)

S

 	
 	sanitizeFileName() (baangt.base.Utils.utils static method)

 	saveConfigFileProcedure() (baangt.ui.ui.UI method)

 	saveContentsOfConfigFile() (baangt.ui.ui.UI method)

 	saveInteractiveGuiConfig() (baangt.ui.ui.UI method)

 	savePythonFile() (baangt.katalonImporter.katalonImport.translateGoovy method)

 	saveTestCase() (baangt.ui.ImportKatalonRecorder.ImportKatalonRecorder method)

 	saveTestCaseExecution() (baangt.ui.ImportKatalonRecorder.ImportKatalonRecorder method)

 	saveTestCaseHeader() (baangt.ui.ImportKatalonRecorder.ImportKatalonRecorder method)

 	saveTestData() (baangt.ui.ImportKatalonRecorder.ImportKatalonRecorder method)

 	
 	setBaseURL() (baangt.base.ApiHandling.ApiHandling method)

 	setCompleteTestRunAttributes() (baangt.base.TestRunUtils.TestRunUtils method)

 	setEndPoint() (baangt.base.ApiHandling.ApiHandling method)

 	setHeaders() (baangt.base.ApiHandling.ApiHandling method)

 	setLocatorFromLocatorType() (baangt.base.Utils.utils static method)

 	setLoginData() (baangt.base.ApiHandling.ApiHandling method)

 	setLogLevel() (baangt.base.Utils.utils static method)

 	setup (module)

 	setupLogger() (in module baangt.katalonImporter.katalonImport)

 	splitVariable() (baangt.ui.ImportKatalonRecorder.ImportKatalonRecorder static method)

T

 	
 	tearDown() (baangt.base.ApiHandling.ApiHandling method)

 	(baangt.TestCase.TestCaseMaster.TestCaseMaster method)

 	(baangt.TestCaseSequence.TestCaseSequenceMaster.TestCaseSequenceMaster method)

 	teardown() (baangt.TestSteps.TestStepMaster.TestStepMaster method)

 	TestCaseMaster (class in baangt.TestCase.TestCaseMaster)

 	TestCases (class in baangt.katalonImporter.katalonImport)

 	TestCaseSequenceMaster (class in baangt.TestCaseSequence.TestCaseSequenceMaster)

 	
 	TestCaseSequenceParallel (class in baangt.TestCaseSequence.TestCaseSequenceParallel)

 	TestRunExcelImporter (class in baangt.base.TestRunExcelImporter)

 	TestRunUtils (class in baangt.base.TestRunUtils)

 	TestStepMaster (class in baangt.TestSteps.TestStepMaster)

 	translateGoovy (class in baangt.katalonImporter.katalonImport)

 	translateObjectDefinition (class in baangt.katalonImporter.katalonImport)

 	translateTestCase (class in baangt.katalonImporter.katalonImport)

U

 	
 	UI (class in baangt.ui.ui)

 	
 	updateGlobals() (baangt.base.HandleDatabase.HandleDatabase method)

 	utils (class in baangt.base.Utils)

W

 	
 	writeCell() (baangt.ui.ImportKatalonRecorder.ImportKatalonRecorder method)

Handling of Browser Drivers

When you install baangt the latest version of Chromedriver and Geckodriver (for Firefox) are included. Depending on your
situation you might need different drivers.

New release of browser drivers

As you work with baangt for a longer time your browsers might be updated. If you receive an error telling about wrong
version of browser driver, you can simply delete the existing driver in baangt/BrowserDrivers/ and on the next start
baangt will automatically download the latest version.

Alternative version:

If you start baangt with the following syntax from the command line, it will download the latest drivers (Chrome and
Firefox) automatically:

`python3 baangt.py --reloadDrivers=True`

It will overwrite existing versions.

Older releases of browser drivers

Please download the release that you need from chrome and/or Firefox and replace the existing files in baangt/BrowserDrivers/
which the freshly downloaded, older version. After the next start it should work fine.

Special functions in datafiles

Datafiles (or in Excel Simple format simply a tab “data”) generally hold the data for one or more testcases.

The first line of the datafile holds the header line. Each cell in the header must have a unique value and acts as variablename,
which you can use for checking, for IF-Statements or as values to write into fields or compare with assertions.

Additionally there are some reserved names that deliver the following functionality:

Field names in Datafiles and their function

	Field name

	Description

	TC Expected Error (!sic)

	When set to value X, the Test case is supposed to fail. If it fails (as expected) the status of the testcase is set to OK.

	JSON

	Please don’t use this fieldname, as we’re using it internally to store data.

	Timelog

	Please don’t use this fieldname, as we’re using it internally to store the timelog during execution of the test case.

DataGenerator

When we work with baangt to perform various tasks, we need to give excel file containing all data as input.
Sometimes this data can be too big and can be a huge headache when one has to type all these manually. To overcome this
issue we had made an application which can generate all possible data combinations by just providing and small excel file
containing all data.

Input File

[image: _images/DataGeneratorInput.png]

	This image is an example input file. Different types of data types supported are given different number in the above image.

	
	Is a simple value.

	Is a list of value.

	Is a list of value with RND_ prefix. We will learn more on it further.

	RND_1,10,2: RND_ prefix is also used here but with a range.

	Simple range.

	List of header.

	FKR_ prefix is used here.

	FKR_ prefix is used here with a new integer value 0 in end.

	RRD_ prefix is used here.

Using these data type we will generate all possible values.
Here is a simple example with simple value and value of list.

Example Input:-

vehicle, seats
car, [2,4,5]
bus, 60

Example Output:-

vehicle, seats
car, 2
car, 4
car, 5
bus, 60

As you can see that the output file contains every possible combination of input file. Further you will learn more about
Data Types in next section.

Data Type

	We will use the reference of above image and assigned number to learn about it in detail.

	
	It is a simple single value.

	It is a list of values which will be further used to create all possible combinations as shown in above example. Format = [value1, value2, value3]

	Here comes a prefix. RND_ is a prefix which is used when we don’t need to create all possible combinations from a list
and have to use any one of the data from the list whenever new data is generated. So it will not increase number as it
is not compulsory to use all value.

	Range is a new data type. It is used when we want to create a list of number with all of them having same gap between
them.
Format = Starting-Ending,Step
Example input = 2-40,4 || Output = [2, 6, 10, 14, 18, 22, 26, 30, 34, 38]
As shown in example, instead of writing whole list we can just use Range. In our example range is used with RND_ so
after creating this list random function will come into effect.

	As explained in point 4.

	List of header. When there are multiple headers which have same value inside them, then we can simply write a list of
header in a single cell. Then the program will consider each value as an individual header and each of them will have
the same below data.
Example:
header1, [header2,header3]
value1 , value2
output:
header1, header2, header3
value1 , value2 , value2

	FKR_ is another prefix used to generate fake data. It uses the faker module of python the generate the fake data.
format = FKR_``(type, locale)
Note:- We use tuple with ``FKR_ prefix
Example = FKR_(email, EN_US)
In our example we used type = email as we want to get fake emails. EN_US is a locale which will make sure that email
should be of same words of that language. By default this will create list of 5 fake emails, if you want to change default
number of 5 you can add that number in the end of tuple.
Example:- FKR_(email, EN_US, 8)
Now this will generate list of 8 fake email and on every data any random email would be selected.

	Now what if we don’t want to create a list of email instead we want new mail for every data generated. For this we can
simply use 0 number at the position of list length.
Example:- FKR_(email, EN_US, 0)
Now this will generate new email for every data in the output.

	RRD_ is used when we have multiple sheets in a input file and we need to take value which are matching conditions
from that sheet.
Format:- RRD_(<sheetName>,<TargetData>,[Header1:[Value1],Header2:[Value1,Value2]])
Here sheetName is the name of the sheet where our TargetData is located. A dictionary of TargetData is generated with all
the data which are matching from our Header: Value pair. A header with multiple value list is than converted to all
possible value as mentioned in above explanation. At last a random value is selected from TargetData dictionary for every
output data.
If TargetData = * then all the values of the matched row will be treated as TargetData.
If Header:Value List = [] then the defined TargetData will be collected from every row of the defined sheet.
i.e.
For all value in matching row RRD_(sheetName,*,[Header1:[Value1],Header2:[Value1,Value2]])
For TargetData from whole Sheet RRD_(sheetName,TargetData,[])
For all data inside sheet RRD_(sheetName,*,[])
If a input sheet has multiple cells using RRD_ prefix with a matching data (=header of excel column) in TargetData
then they will be treated as one unit. In the output file there will be only one column of that matching header and while
selecting random data only the rows which have same value of that header will be considered.
i.e. First RRD_ cell has value “x” for the header while selected randomly, then the second cell will select data
randomly only from the rows which have “x” value for the same header.

All Data Types Format

	Value = <value>

	list of values = [<value1>,<value2>]

	range = <start>-<end>,<step>

	random = RND_[list]

	random from range = RND_<start>-<end>,<step>

	List of header = [<title1>, <title2>, <title3>]

	Faker Prefix = FKR_(<type>, <locale>, <number_of_data>)

	RRD Prefix = RRD_(<sheetName>,<TargetData>,[<Header1>:[<Value1>],<Header2>:[<Value1>,<Value2>]])

Developer guidelines for custom enhancements

baangt is already pretty versatile but from time to time you’ll face a requirement, that simply can’t be done without
writing code. But that’s not a bad thing - we like writing code after all, don’t we?

Subclassing

The main classes and functions should be more than OK for you. You’ll just need to implement some central enhancements.
For instance there’s a requirement to check after each Browser-Interaction, whether a specific popup/message appeared.
Don’t be cruel and let the end-users duplicate the locator over and over again in their XLSX.

Instead create a subclass of BrowserDriver

from baangt.base.BrowserDriver import BrowserHandling

class MyCustomBrowser(BrowserHandling)
 def findByAndClick(...)

 # Search for the element
 self.customSearchAndReact()

 def customSearchAndReact():
 if self.findBy(xpath, "specialThingForThisClient"):
 self.testdataDict[GC.TESTCASESTATUS] = GC.TESTCASESTATUS_FAILED

That’s it. Business people will love you and whenever “specialThingForThisClient” changes, you’ll have to adjust only
in one place.

After subclassing you’ll need to replace the standard BrowserHandling with MyCustomBrowser in order for baangt
to use it.

Debugging

Yeah, sometimes the logs alone are not enough, even when you set loglevel to debug. In such cases you’ll want to set
breakpoints and expect the program to halt on the breakpoint. You’ve two chances to achieve that:

	
	Start baangtIA.py from CLI using:

	python3 baangtIA.py --run=<PathAndFileOfTestrunName> --globals=<PathAndFileNameForGlobals>

	Use TX.DEBUG as flag in baangt interactive starter (=the UI, that comes when you start CLI without parameter
--run) with value True

Plugins

Please make yourself familiar with https://pluggy.readthedocs.io/en/latest/ in order to implement Plugins.
If you’re stuck let me know.

Network trace

Sometimes it’s useful (especially for frontend debugging and in performance measurments) to have more detailed log about
the calls that the browser exchanges with the backend. If you need this, use TC.NetworkInfo with value = True.
In the output file you’ll see a new tab “Network” that shows all calls, headers, payload and timing information for each
call.

Use with care, as the file can get pretty big.

Building baangt sources

Core project members can build distribution as follows:

Building pyPi

	Increase version in setup.py

	MakePackage.sh to upload to PyPi

	Use latest version in depending project’s requirements.txt (Custom projects)

	pip install -r requirements.txt

Building Executables

	Checkout https://github.com/Athos1972/baangt-executables

	Checkout https://gogs.earthsquad.global/athos/baangt

	Change to /baangt directory

	On a Windows computer: execWindow.bat (Takes about 5 Minutes)

	Move /executables/baangt_windows_executable.zip to checked out baangt-executables ideally with this line:

mv executables/baangt_mac_executable.zip ../baangt-executables

	Repeat accordingly on Mac (execMac.sh)

	Repeat accordingly on Ubuntu (execUbuntu.sh)

	git add . in the folder baangt-executables

	git commit -m <version>

	git push

Windows bundle executables:

	Install innosetup-qsp (QuickStartPack) Version 6 from https://jrsoftware.org/isdl.php

	Open Inno Setup

	Use Script /windows/baangtSetupWindows.iss

	Check that the path for the LICENSE is correct on your computer (most probably it isn’t!)

	Execute the script using the “Compile”-Button (takes about 3-5 Minutes)

	Copy the file from /baangt/windows/output/baangtsetup.exe to baangt-executables folder

	git add . in the folder baangt-executables

	git commit -m <version>

	git push

Why baangt and why is it open source?

baangt is a great product because it reduces pain on a daily basis. It’s fast, simple and available as open-source.

Fast, easy, free test automation can help people transform their lives. Literally! Think of all the testers, developers,
DevOps, Project Managers and last but not least Users who are confronted with bugs on a daily basis. Not only new bugs.

Bugs, that have been fixed countless times. Bugs in functionality, that worked yesterday but doesn’t today. Nobody knows why,
but now that it reached production we’ve to establish a task force, inform management, sales reps and maybe even customers.

That’s pain. And lost energy, that could have been used to create and improve instead of fixing an error and it’s side
effects in countless systems within the sytem landscape.

Testing is undervalued. In parts because it’s crazy expensive, tedious and slow. Enter baangt. Enabling business users
to actually record and create test cases and seamlessly run them on any environment (either by themselves or by their
IT-Guys or both) helps to ensure rock-stable production environments.

Depending on the environment baangt can also easily be used to test on Dev, Pre-Quality or Quality-Stages and thus
considerably reduce the cost of bugs. The sooner they are cought, the less effort on all sides.

Why open source?

Also to reduce pain. When you work with existing suits - once you get seriously started - they own you. Imagine you’ve
invested 1 Mio USD into creation of Test cases and then it turns out, that a critical feature to complete End2End-Chains
is not available with your current license model of your software vendor. What will you do? Throw it all and restart? Or
pay them almost any price for a potentially small feature that they anyway had in the drawer from the last customer?

Right. Of course one needs to make a living. We all do. And of course efforts invested in baangt especially custom
tailored functionality - are charged and are not cheap. BUT after all baangt is written in Python. There are millions
of Developers out there who know and understand the language. Even if we’d get crazy with our pricing, you could always
use the latest version of baangt, create your own fork and have a small team of east-asian guys implement whatever
it is you miss. No sunken costs, no restart, no disrupted testing while you have to move 1000s of Testcases to a new software.

Built on the shoulders of giants

Building baangt from the scratch would take years and cost millions. That it exists and that it works so versatile is
due to other great, dedicated people who supplied the building blocks. Of course there’s too many to mention but here’s
a list of the most valuable components of baangt

	
	Python3

	
	Flask

	PySimpleGui (again on the shoulders of giants like QT4/5 and Tkinter)

	Requests-Module

	BeautfiulSoup

	Selenium

	Mozilla Foundation (geckodriver, firefox)

	PyCharm by JetBrains

	Gogs GIT-Server

Installation

There are various ways to install and use baangt depending on your requirements and setup.

Run the executables

Installing the executables for your operating system (MacOS, Windows, Ubuntu) is simple. Head over to
https://github.com/Athos1972/baangt/tree/master/executables select the archive for your operating system,
download to your local computer and unzip.

In the new folder you’ll find baangt executable. Click on it and explore examples in /examples folder.

There’s also a video on Youtube: https://www.youtube.com/watch?v=25wdwElMlH4 and an article with more background
information in the blog: https://www.baangt.org/4-ways-to-install-baangt-on-macos-windows-and-linux/

Install from sources

Install sources from GIT (Please adjust to your virtual environment as per your preferences

git clone https://gogs.earthsquad.global/athos/baangt
cd baangt
pip3 install -r requirements.txt
python3 baangtIA.py

Docker

Install from GIT:

git clone https://gogs.earthsquad.global/athos/baangt-Docker
cd baangt-Docker
make build
make run

then use your preferred VNC-Client with vnc://localhost:5902. Unless you changed the default password, the
password is password .

Install PIP-Package

If you’re planning to implement subclassing and you don’t want to contribute to this open source project you can also
use the pip package:

pip install baangt

What is baangt

Testing software has always been a challenging field, and it’s not getting easier or simpler, as overall complexity in corporate
and other applications skyrockets. Release cycles in larger corporations are often long because of inefficient regression
tests. Also costs of software updates, upgrades and forward development are heavily impacted by too little test coverage.

To stop praying when you release to production, you need to start serious testing!

With baangt you have one open source solution for all your test stages and needs. Be it Frontend with Webbrowser, API,
graphQL, SOAP, oData or chromium related App-Tests. You’ll use one toolset, one database per stage and one reporting to
see at any given moment, how your stages and applications are doing and if it’s safe to release the current state of one
stage to the next.

baangt is optimized to be super easy to start, and flexible when your demand grows.

The fastest, simplest way to record test cases

If your requirements are pretty basic, you’d start using baangt with a simple Excel-Sheet as source of Testcase definition and
Testdata definition. This is super fast, very easy even for end-users but has limited flexibility, even though it comes packed
with all features of the higher end solutions like reporting, fault tolerance, screenshots in case of errors and much more.

More powerful and still simple ways:

As your requirements grow you want to have Testcase and testrun definition separately (e.g. you want to execute the same
test cases on different stages of your system landscape (Pre-Quality, Final-Quality, Dev) and not for every heartbeat test
you would want to run through your 1000s of records of test data. Maybe you will have a SQL-Query in your Excel based data, which changes
data records dynamically or per stage or per version, that you want to test for.

Things are not so simple in this stage, but still simple enough for technically versed business department to run high
quality tests on all stages by themselves.

Even after the point, where you need technicians to integrate baangt with your CD/CI-Pipeline`s build-management tools,
the maintenance of data and test sequence can be done without ANY other tools (except Excel or OpenOffice) easily by the
people who know best what to test: Your business department.

Hey, why not do everything in Excel?

There is one serious drawback from this flexibility: it’s change. Of course you started with 1 sheet, but later had some additional
requirements and simply added a second sheet to cover those without changing the definitions of the first excel sheet.
You’re still happy as you need both behaviours tested (imagine one test set for regional customers and another test set
for customers from other countries). Great. Everything works.

After having some serious problems in production and fixing
those defects, you decide to write a testcase to mimic a certain user behavior (e.g. navigating back and forth multiple
times, deleting and re-adding objects from a shopping cart, etc.). The basic test sequence would still be the same as in
the other two cases, but for a specific card you’ll need changes. Simple. You copy one of the original sheets and adjust
accordingly. You immediately sleep better because now also those cases are part of your growing regression test set. Wonderful.
You continue like this for 2 months, end up with 2 or 3 datafiles and 20 test case definitions. That’s not uncommon. What is also
not uncommon is “Change”. For more direct communication with the endusers the AUT (Application under test) get’s enriched
with a Sentry-Popup. Wonderful idea. But wait… It’s not so great after all, because now you have to update 20 test case
definitions with a way to deal with the new popup. Imagine corporate environments where we have many thousands or many tens of
thousands tests.

Subclassing for multiply used functionality

The existing classes baangt.TestCase.TestCaseMaster and baangt.TestStep.TestStepMaster can easily be subclassed
and enriched with static functionality - even when you use the Excel version of baangt.py. Yes, you’ll need to know
some basics of powerful Python Language and most probably an IDE.

An example could look as simple like this:

from baangt.TestStep import TestStepMaster

class myTestStep(TestStepMaster):
 def execute():
 self.driver.goToURL("http://www.google.com")
 self.driver.findByAndSetText(xpath='//input[@type="text"]', value='baangt')
 self.driver.findByAndClick(xpath='(//input[contains(@type,'submit')])[3]')

That’s it. All the rest is taken care of by baangt. You’ll also receive a nice export file showing timing information
for your TestCase.

You can subclass any other functionality, that doesn’t fully fit your needs (IBAN-Generation, Browser-Handling, Timing)
and also create your own Assertion-classes (for instance if you need to receive data from a Host-System or
RFC/SOAP-Connection or any other source that is not natively supported by baangt.py). Of course you’d only
re-implement methods that you need to enrich, and consume everything else from the framework.

Please consider creating pull-requests if you think some of your custom implemented functionality could be useful for
others.

BaangtDB for flexible, powerful enterprise grade test automation

Enter the next stage: baangtDB. baangtDB does much more than just replace Excel as input and sequence source. BaangtDB
provides modularization of your test cases. In the above example you’d maintain the Sentry-Popup exactly ONCE for all your
test cases, where it applies.

If you’re in a really large corporate environment, you’ll start facing problems with the XLS-Based solution, as corporate
governance, compliance, regulations and so on will sooner or later make it difficult to use the software in this way.
Even if you use git you experience problems with different versions of the Excel-Sheets - depending on your setup of course.

But still no need invest into expensive, licensed, closed source, proprietary solutions and depend on their good will.
Run baangtDB (for testdata and testcase sequences) in a docker container, on premises or in the cloud and have the full
flexibility plus comfort for free.

To sum it up

There are multiple ways to use the open source testing framework baangt. Each with it’s up- and downsides.

Possibilities to use baangt

	XLSX-Simple format

	to get you started the single Excel-Sheet holds test sequence and data. Fully functional, full reporting on test execution.

	XLSX-full format

	XLSX format: more comples test run, test sequence, test case, test steps as part of testcase definition file. Separate data file.

	baangtDB

	Complexity of XLSX-Format, but simpler maintenance in corporate environments. More and better ways to structure and reuse testcase sequences.

	Cloud

	Same as database

	Hosted

	Same as database

Parameters in Configuration files (globals)

Generally it’s not needed to change parameters in the config files during manual or automated execution, as the parameters
have default values or are anyway defined in the Testrun definition. Still sometimes it’s very handy to change them on the fly,
for instance to slowly retest a single testrecord or to not close the browser after an error.

Parameters in globals

	Parameter

	Description

	Release

	As you move your maturing software through the system landscape, you might still need regression test results based
on “old” release functionality, while on lower stages you might want to (regression)-test already newer versions
or newer functionality. In baangt there is no need to copy test cases in those situations. You simply update
your test case definition with the appropriate version number (e.g. >= 2020-10) and set the proper Release in
the config file. For instance “2020-09” when you want to run on final quality and the changes from version “2020-10”
are not there yet.

Note for developers:

It’s a static method - if you need to apply different versioning schema for your system landscape,
simply subclass TestStepMaster and overwrite only the method ifQualifyForExecution.

	TC.slowExecution

	When set to true, the browser will stop for a short time after each command, so that you can also visually see
what the browser is doing

	dontCloseBrowser

	When the browser or script finds an error, it usually takes a screenshot and moves on to the next testcase.
With this setting to True the browser session will stop right at the error.

	TC.BrowserAttributes

	Set the value to {'HEADLESS': 'True'} to run Chrome/Firefox in headless mode.

	TC.Lines

	Which lines from datafile to process.

	linennumber e.g. 5. Will execute the selected testrun using line 5 from the datafile

	linenumber_from - linenumber_to e.g. 1530 - 1540. Will execute the selected testrun with lines 1530
until including line 1540

Combinations are possible and allowed, in this case separate the numbers by comma e.g. 5, 10-20, 30-90

	TC.Browser

	If the testcase is WEB-Testing, then you can overwrite the browser, which is defined inside the testrun definition.
If the testcase is not a Web-Testcase this setting doesn’t have any effect.
Valid values are Chrome, FF and Safari

	TC.BrowserZoomFactor

	Set’s the zoom factor for the browser window in the current test case. Values are numeric. Default = 100.

	TC.ParallelRuns

	Number of parallel sessions to be executed. Values depend largely on your hardware and internet connection.
Debugging works only in a single session.

	TC.NetworkInfo

	Creates a very detailed trace of network activity of the browser(s). In the output file you’ll find another Tab
“Network”, that holds all API-Calls from the frontend (including header, payload and answer).

	TC.ExportAllFields

	When set to “True”, instead of specifying certain fields from the input data, that will be exported to the result
field, take ALL fields for export.

	TC.RestartBrowser

	When set to “True”, will always start a new browser after the previous test case was done.

	TC.UseRotatingProxies

	When set to “True”, will not use your own IP-Address but will use random rotating proxy servers from a list of proxies.

	TC.BrowserWindowSize

	When set to a value of width x height, will adjust the browser window dimensions. Value format can be
<w>;<h> or <w>,<h> or <w>/<h> or <w>x<h> or --<w>,--<h>

	TC.ReReadProxies

	When set to “True”, the proxy-servers will be re-evaluated. Otherwise existing list of Proxy-Servers will be used
for proxy rotation. List must be named proxies.json and contain a list of proxies.
Each entry in the json file must contain ip and port.

	CL.<classType>

	Usually you’d set the className of your own subclassing classes either in the testrun-JSON or XLSX for each
object of a testrun (TestCaseSequence, TestCase, TestStepSequence, TestStep). Here you also have the
change/define other classes (e.g. BrowserDriver, Timing, etc.), which you subclassed and enhanced for your
local installation.

	TC.LogLevel

	Set the LogLevel to a different value. In baangt standard the file-logger is set to debug while the console
output is set to info. Using this setting you’ll set both logger channels to whatever value you provide.
In the new UI you’ll see a dropdown menu.

Future Features

We implement all features for 3 operating Systems (Mac, Windows, Ubuntu and Ubuntu on Docker).

Short/Medium term features

	
	Nicer interactive UI-Starter (2020.03)

	
	Phase 1 done 2020.02

	Phase 2 done 2020.04

	Provide live statistics (2020.05)

Features for later

	Double Opt-In Automation (so far no ‘takers’)

	Proof of concept with PyWinAuto

	Integration with SAP Gui Scripting via VBS and PyWinAuto

	Improved support for Mass testing APIs

	Katalon Importer/Converter as Webservice (2020.04)

	Integration with Atlassian Confluence (for Testcase and Testrun definitions)

	Integration with Atlassian Confluence (to publish results of testruns)

	Integration with MS Teams to publish results of Testruns

	Integration with Telegram to publish results of Testruns

	Grafana Board for baangtDB

	Better support for oData V4.0 (similar to SOAP)

	Support for GraphQL via Graphene

PRO-Features

There’s no time plan yet, when a pro version will be released. So far whatever we do goes into the open source version.
Future features might include:

	Consulting

	Priority support

	Testcase creation as a Service

	Testing as a service

Save Testrun Results to Database

One of the options that baangt provides to save the results of the executed Testruns is using an SQL database.
The identification of the database is implemented via the environmental variable BAANGT_RESULTS_DATABASE_URL.
if baangt cannot retrieve BAANGT_RESULTS_DATABASE_URL it uses the default database URL:
sqlite:///testrun.db

Tables

Table: testruns

Table holds results of the executed Testruns: Testrun Logs

Testrun Logs

	Column

	Data Type

	Description

	id

	BINARY

	Testrun Log UUID. Primary key for Testrun Log.

	testrunName

	VARCHAR

	A name associated with the Testrun.

	logfileName

	VARCHAR

	Path to the logfile of the Testrun.

	startTime

	DATETIME

	Satrt time of the Testrun execution.

	endTime

	DATETIME

	End time of the Testrun execurtion.

	dataFile

	VARCHAR

	Path to the Data File of the Testrun.

	statusOk

	INTEGER

	Number of the successful test cases within the executed Testrun.

	statusFailed

	INTEGER

	Number of the failed test cases within the executed Testrun.

	statusPaused

	INTEGER

	Number of the paused test cases within the executed Testrun.

Table: testCaseSequences

Table holds data on the executed test case sequences: TestCaseSequence Logs

TestCaseSequence Logs

	Column

	Data Type

	Description

	id

	BINARY

	TestCaseSequence Log UUID. Primary key for TestCaseSequence Log.

	testrun_id

	INTEGER

	Foreign key to testruns
Testrun that contains the test case sequence.

Table: testCases

Table holds data on the executed test cases: TestCase Logs

TestCase Logs

	Column

	Data Type

	Description

	id

	BINARY

	TestCase Log UUID. Primary key for TestCase Log.

	testcase_sequence_id

	INTEGER

	Foreign key to testCaseSequences
Test case sequence that contains the test case.

Table: globals

Table holds global variables of the executed Testruns

Globals

	Column

	Data Type

	Description

	id

	INTEGER

	Primary key for the global variable.

	name

	VARCHAR

	Name of the global variable.

	value

	VARCHAR

	Value of the global variable.

	testrun_id

	INTEGER

	Foreign key to testruns
Testrun that contains the global variable.

Table: testCaseFields

Table holds log fields of the executed test cases

Testcase Fields

	Column

	Data Type

	Description

	id

	INTEGER

	Primary key for the field.

	name

	VARCHAR

	Name of the field.

	value

	VARCHAR

	Value of the field.

	testcase_id

	INTEGER

	Foreign key to testCases
Test case that contains the field.

Table: networkInfo

Table holds info on requests made while execution of the test cases

Network Info

	Column

	Data Type

	Description

	id

	INTEGER

	Primary key for the network info.

	browserName

	VARCHAR

	Browser name that was used to make the request.

	status

	INTEGER

	The status code of the HTTP response.

	method

	VARCHAR

	The request method.

	url

	VARCHAR

	The request URL.

	contentType

	VARCHAR

	Content-type header of the response.

	contentSize

	INTEGER

	The size of the response content.

	headers

	VARCHAR

	A string that represents a list of the response headers in format:
{'name': HEADER_NAME, 'value': HEADER_VALUE}

	params

	VARCHAR

	A string that represents a list of the request GET parameters in format:
{'name': PARAMETER_NAME, 'value': PARAMETER_VALUE}

	response

	VARCHAR

	The content of the response.

	startDateTime

	DATETIME

	The time when the request was sent.

	duration

	INTEGER

	The time (in ms) that it took to receive the response after the request was sent.

	testcase_id

	INTEGER

	Foreign key to testCases
Test case that contains the network info.

For Developers: ORM API

baangt provides ORM models to facilatate analysis of Testruns results.
The models are located in module baangt.base.DataBaseORM

TestrunLog

Provides interface with table testruns

baangt.base.DataBaseORM.TestrunLog

	Attribute

	Description

	id

	Testrun Log UUID as a bianry string.

	testrunName

	Name of the associated TestRun.

	logfileName

	Path to the associated log file.

	startTime

	TestRun start time as a datetime.datetime object.

	endTime

	TestRun start time as a datetime.datetime object.

	dataFile

	Path to the associated Data File.

	statusOk

	Number of the successful test cases.

	statusFailed

	Number of the failed test cases.

	statusPaused

	Number of the paused test cases.

	globalVars

	List of the global attributes (as GlobalAttribute instances) of the associated Testrun.

	testcase_sequences

	List of the test case sequences (as TestCaseSequenceLog instances) within the associated Testrun.

	__str__()

	Method. Returns Testrun Log UUID as a string.

	to_json()

	Method. Returns Testrun Log as a dictionary object.

TestCaseSequenceLog

Provides interface with table testCaseSequences

baangt.base.DataBaseORM.TestCaseSequenceLog

	Attribute

	Description

	id

	TestCase Sequence Log UUID as a bianry string.

	testrun

	The associated Testrun (as a TestrunLog instance).

	testcases

	List of the test cases (as TestCaseLog instances) within the associated Test Case Sequence.

	__str__()

	Method. Returns TestCase Sequence Log UUID as a string.

	to_json()

	Method. Returns TestCase Sequence Log as a dictionary object.

TestCaseLog

Provides interface with database table testCases

baangt.base.DataBaseORM.TestCaseLog

	Attribute

	Description

	id

	TestCase Log UUID as a bianry string.

	testcase_sequence

	The associated Test Case Sequence (as a TestCaseSequenceLog instance).

	fields

	List of the attributes (as TestCaseField instances) of the associated Test Case.

	networkInfo

	List of the network requests (as TestCaseNetworkInfo instances) made while executing the associated Test Case.

	__str__()

	Method. Returns TestCase Log UUID as a string.

	to_json()

	Method. Returns TestCase Log as a dictionary object.

GlobalAttribute

Provides interface with table globals

baangt.base.DataBaseORM.GlobalAttribute

	Attribute

	Description

	name

	Name of the global attribute.

	value

	Value of the global attribute as a string.

	testrun

	The associated Testrun (as a TestrunLog instance).

TestCaseField

Provides interface with table testCaseFields

baangt.base.DataBaseORM.TestCaseField

	Attribute

	Description

	name

	Name of the Test Case Field.

	value

	Value of the Test Case Field as a string.

	testcase

	The associated test case (as a TestCaseLog instance).

TestCaseNetworkInfo

Provides interface with table networkInfo

baangt.base.DataBaseORM.TestCaseField

	Attribute

	Description

	browserName

	Browser name that mede the request.

	status

	Status code of the request as an integer.

	method

	The request method used.

	url

	The request URL.

	contentType

	Type of the response content as a string.

	contentSize

	Size of the response content as an integer.

	headers

	A lList of the response headers as a string.

	params

	A list of the request GET parameters as a string.

	response

	The response content as a string.

	startDateTime

	The request start time as a datetime.datetime object.

	duration

	The duration of the request in ms.

	testcase

	The associated test case (as a TestCaseLog instance).

	to_json()

	Method. Returns the network info as a dictionary object.

How to create a simple API Test

API-Tests are usually something, that the classic business people wouldn’t know about. With baangt and a bit
of effort it should be possible even for business people to do some simple API-Tests.

As with all tests in baangt also API-Tests are defined in a simple format in MS Excel. See MovieSimpleAPI.xlsx
as working example.

Prerequisit for simple API definition format:

	Filename must contain the word “api”, otherwise simple format will try to create a browser test run.

Steps to test the simple API Format:

Fire up baangt, chose file MovieSimpleApi.XLSX as your run definition. Start the testrun by clicking on the
button Execute. After a few seconds you should see the popup “Testrun finished”. Now open the result file
baangt_MovieSimpleAPI_<date>.xlsx and see overview and details of the API Test run.

Play around

To extend this very simple example you could want to add the field “Actors” to your result sheet. To do so, add one line
in the Tab TestStepExecution.

	Activity is SAVE

	Value is RESULT_Actors

	Value2 is $(ANSWER_CONTENT.Actors)

Save the Excel-Sheet. Re-run the test case and you should see the new column “Result_Actors” with the values retrieved
from the API.

Activities for API-Tests:

(Even though we write all activtities in UPPER CASE, you can write them in any way you like)

Values for Activities for simple API format

	Activity

	Description

	APIURL

	Set’s the main URI/URL for your API-Tests. Could be omitted, if you want to always specify full path in ENDPOINT.

	ENDPOINT

	Set’s the Endpoint-Name for the following API-Call. E.g. if your Endpoint is located at
https://app-eu.earthsquad.global/api/rest-auth/login and during this test case execution you’d call a lot of APIs
on this server, then you’d set APIURL to https://app-eu.earthsquad.global and set ENDPOINT to “/api/rest-auth/login”

	POST

	Send a “POST”-Request to the API. Place the content, that you want to send to this endpoint in the column value

	GET

	Send a “GET”-Request to the API. URL-Parameters are taken from APIURL and ENDPOINT. Result is stored for
immediate retrieval (see below).

	HEADER

	Set additional parameters for the next API-Calls into the Header. In combination with the special fields (see below)
it’s easy to take a result from one API-Request and use it (or parts of it) as input for the next call.

	SAVE

	Save a value from the header or from result to output file (XLSX). value is the field-name. If you name it
“RESULT_<something>” it is automatically added to the export field list. If you work in API-Simple mode, this is
your only chance to get fields added into the result sheet.
value2 is the source (e.g. $(ANSWER_CONTENT.imdbRating) would retrieve the value “imdbRating” of the
answer of your API-Call.

	ASSERT

	This will retrieve value of element specified by locator
And compare with expected_value specified in value

if expected_value not matches with output_value it will raise TestStepExecution and result in FAILED.

	ADDRESS_CREATE

	Create Address Data for various test cases and save in testDataDict
The following field variable can be used via $(field_name).

[‘HouseNumber’, ‘AdditionalData1’, ‘AdditionalData2’, ‘StreetName’, ‘CityName’, ‘PostalCode’, ‘CountryCode’]

	Example:

	Default Data: (value=<blank> and value2=<blank>)
‘HouseNumber’: ‘6’, ‘AdditionalData1’: ‘Near MahavirChowk’, ‘AdditionalData2’: ‘Opposite St. Marish Church’, ‘StreetName’: ‘GoreGaon’, ‘CityName’: ‘Ambala’, ‘PostalCode’: ‘160055’, ‘CountryCode’: ‘India’

	value optional

	
	if provided(value= {“CountryCode”:”US”,”CityName”:”Athens”} value2=<blank>)

	FieldValue updated to:
{‘HouseNumber’: ‘6’, ‘AdditionalData1’: ‘Near MahavirChowk’,
‘AdditionalData2’: ‘Opposite St. Marish Church’,
‘StreetName’: ‘GoreGaon’, ‘CityName’: ‘Athens’,
‘PostalCode’: ‘160055’, ‘CountryCode’: ‘US’}

value2 optional

Field will be prefixed with “office_<field_name>”. Ex. “office_CountryCode”

Special data fields in API-Tests:

In WEB-Testing you check results either via Assert-Statement or via mapping the text or attribute of an element to a
field in the TestDataDictionary. In API-Tests you have some automatic internal variables, that you can use without
manually declaring them:

Special Internal Variables in API-Testing

	Variable

	Contents

	RESULT_CODE

	Result code of the last call to an API. Ideally you’d be able to match result codes as described in here
https://restfulapi.net/http-status-codes/, but in the end setting the status code is the job of the developer of
the API you’re using - they might follow a different path or simply have bugs.

	ANSWER_HEADER

	Last Header. You can access a certain part of the header by using $(ANSWER_HEADER.<partName>), so if you want to
use the part login_key of a header you’d write $(ANSWER_HEADER.LOGIN_KEY)

	ANSWER_CONTENT

	Last content of an API-Call (Post, Get, etc.). Again you can access/extract/replace parts of this content using
the “.” like described in the line above (e.g. $(ANSWER_CONTENT.FRANZI) to refer to a content part FRANZI.

Structure of baangt

If you never used any test automation software before, these terms can be intimidating, but in reality it’s all very simple.

We’ll start from the bottom to the top.

TestStep

A teststep is a single activity, for instance clicking on a button or sending a GET request to an API. A teststep has
a mandatory parameter Activity. All other parameters depend on the chosen activity, for instance for Activitiy GOTOURL
you need only a value (the URL where the browser should go to).

For SetText you need a locatorType, the locator (which input field to send the text to) and the text itself.

A teststep may have a timeout setting. If none given, system default will be considered.

TestStepSequence

Many Teststeps together are a TestStepSequence. The Sequence just defines, in which order each individual TestStep is
executed. A TestStepSequence will provide timing information in the test report (Start- and End-Timestamps and
Duration in Seconds)

TestCase

A Testcase is a Sequence of TestStepSequences. You might wonder, why this additional TestStepSequence is needed, why not
simply write the TestSteps directly into the TestCase.

First of all: you don’t need the TestStepSequence. In the simple XLSX-Format this grouping area doesn’t exist.
Second: Imagine you have a login-page, a product bucket, product return functionality and invoice reprint functionality in
your SPA and you want to test all of them. Obviously you’ll have at least 3 Testcases, but in all of them you’ll have to
do a login. You can use the TestStepSequence to extract this repeated Sequence.

In a Testcase we define not only the Sequence of TestStepSequences but also which type of Testcase (Browser, API, etc.)
this is.

TestCaseSequence

Oh no, another level of confusion?!

One or many TestCases can be grouped into a TestcaseSequence. The TestCaseSequence holds the
connection to the datafile(s) to be used and which records to process in this TestRun. In a TestCaseSequence you could
for instance group together the execution of a WEB-Page TestCase and subsequently the execution of an API-Call to retrieve
results from another system. This scenario is of course mostly for corporate system landscapes, where the frontend (Web) communicates
more or less asynchronous with backend components like Hosts, CRM-Systems, SAP-Backends and so on.

By all means if you don’t need it: don’t use it. But in case you need it, it’s good to know it’s there.

TestRun

You guessed it by now. A TestRun as the highest level is a sequence of TestCaseSequences. Why would you need another level of grouping here?

In End-2-End-Tests or Lifecycle tests you’d want to test the whole system’s functionality along a value stream:

	Create Partner in CRM-System

	Use Partner for a Contract

	Deliver Contract

	Invoice Contract

	Dunn invoice

	Post Payment

	Close contract

	Flag all Documents for archiving

	Archive all documents

Each item of this list would be a TestCaseSequence with 1 to many testcases included, various systems, various Web-, API
and other Interfaces within each TestCase.

Again: If you don’t need it, just don’t use it. Every parameter has a default value assigned, so baangt will work
perfectly without you touching things you don’t need.

Types of tests

No matter if your organization is agile or waterfall oriented or follows one of the many hybrid variants. Sooner or later
you’ll have an increment - an outcome from your software developers or customizers. You paid for it. You want it in production.
But will it work? Will there be any unwanted side effects to existing functionality?

Increment testing

Usually an increment is tested manually by human testers who are not identical with the developers.

Depending on maturatiy of your organization and many other factors, the testers will be more or less clearly instructed,
what to test. They might have written business requirements and deduct the test cases themselves. In ideal setups they
were part of the development lifecycle, know the deviations from original requirements, pitfalls and workarounds and can
adjust their test expectation accordingly.

Unless you’re in a greenfield situation where the whole system landscape needs to be tested and retested for months or years
your Testers will focus on testing the increment - not so much the existing functionality, which used to work fine already.

Use baangt already in preparation of this test phase. Create all the test cases, that you plan to execute. Create all
the data combinations, that you’ll want to have tested. Once the functionality is there, record the most complex scenario
in the recorder. Instead of testing 100s of cases manually, you’ll need only one recording and the prepared dataset. Start
the TestRunExecution, sit back and wait for the results. Simple like that.

Heartbeat and Alive-Testing

Alive-Testing is usually done with just one quick test case in all stages (Dev, Pre-Quality and Quality-System). It will
show general availability of the landscape and applications running on it. Alive-Tests with some APIs could run for instance
every 5 minutes.

Heartbeat tests are a smaller subset of regression tests. E.g. if you have 10.000 testcases in regression tests, you’d
use a few hundred for heartbeat tests. They’d usually run a few times per day on Pre-Quality- and once per day on
Quality-System) and of course in the build pipeline.

Regression testing

If you followed through on Increment testing imagine the joy of the next release! You’ll have the increment tested and run
all test cases of previous increments as well. That’s called regression testing. If you did everything well use the results
of regression tests and increment tests as rock-solid base for your decision whether to move on to production or not.

Performance testing

So you did regression and increment tests, moved to production and receive countless complaints from users, that the
performance of the system is too slow. Additionally there are now bugs that appear due to timeout situations. Damn.

What happened?

You tested only for functionality, but not for load. With a few simple adoptions to your test cases you can simulate any
number of users. To achieve realistic performance testing you’ll need more hardware for testing than for regression and
increments. But you’ll use the same tool: baangt.

As of today (Jan 2020) baangt does not provide infrastructure monitoring. In order to analyze the results of your
performance tests you’ll need additional tools, but baangt will give indications, which components or which functionalities
need a closer look by your experts.

End to End (E2E) Testing

Whenever you have more than one system/microservice dealing with a process, you’ll need E2E-Testing. Of course E2E-Tests
are more complex than just running test cases against one functionality and compare results to the expected values and
behaviour. In larger organizations you’ll want to have E2E-Regression tests before you release increments to production.
baangt follows a structure of TestCaseSequences where you combine multiple single Testcases into one Sequence, which
is exactly tailored to run E2E Tests.

Lifecycle tests of business objects

Lifecycle tests come in basically two variations, but can be combined - depending on the requirements of the business.
Many industries deal with objects, that follow a certain (long) life cycle. The life cycle can go over years or decades.
These tests are complex and cost a lot of time and effort.

Time travel tests

Often companies have “Time travel” system landscapes, where they
create copies of the whole system landscape (or large parts of the core systems), change the system time on all servers
and run tests subsequently with different dates. baangt does not support this type of testing out of the box. But
we provide a functionality to “Pause” Testcase and TestCaseSequence execution. You can easily subclass the corresponding
master classes and create your own mechanism, when to pause a Testcase or TestCaseSequence.

Cradle to the grave

Another common form of lifecycle tests. In this case the system time remains basically the same, but the test cases are
created in a sequence to follow the birth of an object until it’s deletion. This might be a material, which get’s created,
production recipe created, work planned, sales contract and order created, produced, delivered, invoiced, paid and
revenue calculated. In service industries C2G-Tests are designed around a customer. baangt fully supports complex
testcaseSequences running on multiple technologies (Web, API, etc.) also in asynchronous scenarios, for instance if you
need to wait for nightly batch processing of a mainframe.

No oversimplification

Please don’t get me wrong. Just because we have a great tool, it doesn’t mean that testing will happen by itself. There’s
still a lot of expert work needed for Testdesign, Stagedesign, Creation and maintenance of Testsets, creation and
maintenance of test data sets, deployment strategies. baangt provides efficient ways to work, but work still needs
to be done.

Dealing with variables

You know the basic variable format $(ColumnFromDataFile) which works in Locators and value fields.

	For instance:

	
	//@id[$(SomeColumnName)] will replace the locator at run time with the content of the data file of column SomeColumnName

	$(URL) in the Value 1 or Value 2 will replace the Value at run time with the content of the data file of column URL

	You may combine several variables into one expression

	
	http://($(BASEURL)-$(URLPART) will work, if your data file has the columns BASEURL and URLPART.
Most probably you guessed it already - Column names are case sensitive. And columns may not be used twice.

Special variables for APIs

TODO: Write Doku.

Faker

From Version 2020.04.6rc4 (April 2020) you can also use all the methods, that the famous python module Faker provides.

The syntax is:
$(FAKER.<methodName>)

	Examples:

	
	$(FAKER.email) will generate random E-Mail addresses

	$(FAKER.name) will generate a random name

To see all the methods, head over to https://faker.readthedocs.io/en/stable/fakerclass.html. Because you use baangt
you can use all Faker Methods without writing a single line of code.

Info for Developers

Source in baangt.base.Faker.py. Called from baangt.TestSteps.TestStepMaster.py from __getFakerData.
Currently it is not supported to hand over parameters.

What is a baangt-plugin

Simply speaking, one baangt-plugin correspond to one class, and the
methods in the class correspond to the implements in the plugin.

how to make a baangt-plugin

first of all , we need to create a implement class, like this:

import baangt

from baangt.base.Timing.Timing import Timing

class TimingHookImpl:

 @baangt.hook_impl
 def timing_init(self):
 return Timing()

 @baangt.hook_impl
 def timing_takeTime(self, timingObject, timingName, forceNew=False):
 return timingObject.takeTime(timingName, forceNew)

 @baangt.hook_impl
 def timing_addAttribute(self, timingObject, attribute, value, timingSection=None):
 return timingObject.addAttribute(attribute, value, timingSection)

 @baangt.hook_impl
 def timing_takeTimeSumOutput(self, timingObject):
 return timingObject.takeTimeSumOutput()

 @baangt.hook_impl
 def timing_returnTime(self, timingObject):
 return timingObject.returnTime()

 @baangt.hook_impl
 def timing_returnTimeSegment(self, timingObject, segment):
 return timingObject.returnTimeSegment(segment)

 @baangt.hook_impl
 def timing_resetTime(self, timingObject):
 return timingObject.resetTime()

and then register this implement class in /baangt/_*init_*.py:

from baangt.base.Timing.hookImpls import TimingHookImpl

plugin_manager.register(plugin=TimingHookImpl())

how the baangt-plugin work

for example, after transfer TestRun to a plugin, we can replace the
code:

from xxx import TestRun
TestRun()

by

from xxx import plugin_manager
plugin_manager.hook.testRun_init()

this replacement does not change anything of the result of programme’s
execution.

how to replace the existing plugin by your own one

for example, if you want to replace the default TestRun plugin,

you can easily change the implement of TestRun by just unregister the
default plugin and register your own one:

plugin_manager.unregister(plugin=default_plugin)
plugin_manager.register(plugin=my_plugin)

notice that if you don’t unregister the old one, two same implements
(with same function name) in two plugins may both execute if you call
the function:

plugin_manager.hook.i_got_two_implements()

the order of the execution follows the FILO (first-in-last-out) rule.

Author: Yuyi Shao

Change log

2020.05

Summary:

While baangtDB is making great progress, we’re in the final touches to release Version 1.0 of baangt base.

New features:

	Added more parameters for testruns in the new UI (e.g. BrowserZoomFactor)

	test data generator for complex random and/or multiplying test conditions created

	All test data from all test runs is now logged in a database. Additionally to results per test run you can compare
results over time. Especially usefull when you have the local proxy server activated!

Bugfixes:

2020.04

Summary:

A huge step closer to release 1. Some minor functionalities still need fixing. May May be the release month!

New features

	Brandnew UI! The pySimpleGui was great during the beginning of the project. As we mature, we switched to QT5, which
looks really great.

	No need to remember technical field names! Yeah!

	All settings to customize a test run execution are now nicely arranged in the details screen

	Katalon-Importer added a few usability changes (e.g. when you save, you’ll see this TestRun selected as default).

	Browsers, Selenium Grid, etc. can be selected via Dropdown-Menu

	Common BrowserAttributes (e.g. Headless) can be selected via Droddown-Menu

	SimpleFormat: New command iban will create a random IBAN. Powered by Schwifty library.

	SimpleFormat: New command pdfcompare compares a downloaded PDF-File with a reference PDF-File and
reports differences. Works also well with parallel sessions.

	All: Variable replacement using Faker module. For instance $(FAKER.email) will generate a random E-Mail address

	All: New flag to export all fields of TestDataDict to result file: TC.ExportAllFields = True

	All: Web-Testcases: Screenshots automatically embedded to result file, not only as a link. Makes it easier to share results
on a communication channel.

	All: Support of Proxies and rotating Proxies (TC.UseRotatingProxies and TC.ReReadProxies)

	All: Support of restarting browser-sessions after each TestCase execution (TC.RestartBrowser = True)

	All: CL.* in Globals-File to overwrite standard classes (e.g. BrowserDriver) to custom classes.

	Appium integration for Android and iOS App tests using Appium Webdriver (see in /examples/App* and globalsApp.json)

	Subclassing: New commands to identify stale objects on page (HTML-Reload and SPA-Support)

	Additional way to export data to Excel-Result (can be used for results of scraping) GC.EXPORT_ADDITIONAL_DATA in
TestRun.additionalExportTabs. For each Tab you want created set up one dict with {<tabname>:<ExportDictContent>}.
Headers = Fieldnames.

	New flag to export all fields of TestDataDict to result file: TC.ExportAllFields = True

	Web-Testcases: Screenshots automatically embedded to result file, not only as a link. Makes it easier to share results
on a communication channel.

	Windows Installer: baangt now works without admin rights on Windows10

	Support of Proxies and rotating Proxies (TC.UseRotatingProxies and TC.ReReadProxies)

	Support of restarting browser-sessions after each TestCase execution (TC.RestartBrowser = True)

	Subclassing: Additional way to export data to Excel-Result (can be used for results of scraping) GC.EXPORT_ADDITIONAL_DATA in
TestRun.additionalExportTabs create one dict with <tabname>:<ExportDictContent>. Headers = Fieldnames.

Changes

	Improved browserDriver Download for executables (didn’t work in some cases)

	Improved database logging of testrun results

	Dramatically improved speed for reading larger Input files (got rid of Pandas for XLSX-Import)

	Improved ease of subclassing for TestStepMaster.

	Improved reaction to common errors on Webpages (Stale element, not accessable, etc.)

	Improved handling of closed windows and tabs (when e.g. PDF-Download was activated)

	Support to supply webelement in driver.javaScript() as *args

	Added many unit tests, but still not full coverage

2020.03

Summary: Release Candiate 3 is on the road!

New features

	Executable files and ZIP-Archives for Mac, Windows and Ubuntu - no more GIT CLONE needed! Simply download, unzip and run.

	Network logging during WEB-Sessions and export to Excel-Result in separate tab. Use TC.NetworkInfo with value True (tested on Mac and Windows, most probably works on Linux too).

	baangtDB: Import and Export functionality for simpleFormat and complex XLSX-Testrun definitions.

	baangtDB: Export also to JSON-Format

	baangtDB: cascaded delete: Delete a test run and all it’s objects (unless used in other test runs)

	baangtDB: Update testrun from XLSX (closed circuit between IT-Department and business department)

	Docs updated with latest parameters

	SimpleFormat: pause command added

	SimpleFormat: address_creation command added to create a random address. Customizable.
Multiple calls will create multiple random addresses.

	CLI: New parameter --reloadDrivers=True downloads latest version of webdrivers for Chrome and Firefox.

	Integration with Selenium Grid V4.0 and baangt. See docs for further details. Separate Repository for the Dockerfile

Bugfixes

	Reporting: Duration sometimes off by Timezone shift hours

	Minor fixes for increased stability with Chrome-based browsers

	Parallel executions on Windows work now, rewrote parallelism (local, without Selenium/Zalenium) completely to run with
less resources. 10 parallel Firefox sessions on a single MacBook with 16 GB RAM works.

2020.02

Summary: Web- and API-Tests XLSX-SimpleFormat are almost completed. Shouldn’t take much longer to have a production ready version.

	Pypi-Version 2020.02.* deployed

	First version of baangtDB with Flask (including Docker Container). No DOCS yet, as it’s still under heavy development. For an early preview you can navigate to /flask directory and execute ./start_docker.sh

	Support of Edge on Microsoft Platform and Safari on Apple/Mac

	Completed support for Versions in SimpleFormat and SimpleAPIFormat (can also be used for baangtDB, subclassed methods and complex Excel TestRun Defintions)

	SimpleFormat now with default locatorType = xpath. No breaking change. Just a tiny little convenience when filling in long Excel Testcase definitions.

	Katalon Importer now creates proper data fields in data tab for simple format XLSX and refers proper variable (column) names in Teststep-Definition

	Improved support for API-Calls and data extraction from API response to result sheet

	Added logical comparison for IF-conditions, whether a field exists or not (using LocatorType and Locator). You can see an example in file BaangtDBFill.xlsx

	Plugin structure for TestRun, ExportResults and BrowserHandling implemented. Example in separate repository https://gogs.earthsquad.global/athos/baangt-Plugin. If you subclassed those classes, you need to adjust the import statements (e.g. from baangt.base.TestRun to baangt.base.TestRun.TestRun)

	Apart from exporting to XLSX it’s now also possible to export testrun results to CSV. In simpleFormat you can set parameter TC.Export Format to the value CSV. In baangtDB and full Excel format you can use Testrun property Export format

2020.01

Very first public beta version. Not at all ready for production.

	First version on Pypi (https://pypi.org/project/baangt/), Docker (https://gogs.earthsquad.global/athos/baangt-Docker) and GIT Repository (https://gogs.earthsquad.global/athos/baangt)

	Support for SimpleExcel and Excel format including some examples

	Basic UI (interactive mode) and CLI (Command Line Interface with 2 parameters)

	
	Methods for Web testing implemented:

	
	SetText(If)

	Click(If)

	GotoUrl

	HandleIframe and Windows (Tabs)

	If/Endif

	GoBack

	simple comparisons (=, >, <)

	Full support for Excel Data files

	Experimental support for Katalon Recorder Import to SimpleExcel format

	Very basic support to Export from Katalon Studio Projects (as subclassed modules)

	Logs

	Export result of TestRun to XLS including statistics, Timing information and analysis

	Docs created, styled, revisited and stored on https://baangt.jointhedocs.io

	Runlog: Additionally to saving execution information in a single Excel sheet for each testrun, also store information in a database for simple comparison of testruns between stages, days, endpoints or whatever else you want to compare. In this version only data storage was implemented. No reporting yet.

Contributions

	Ways to contribute:

	
	Documentation

	Bugfixing

	New features

Documentation

The documentation of baangt is written in RST-Format and part of the standard repository. The compiled documentation
from Sphinx is in the same repository in the branch gh-pages.

	Make sure you have the latest version checked out in GIT

	Create a branch with your name

	Create a pull request

Bugfixing

If you found a bug and want to fix it, please describe the bug in the issue tracker and create a branch with the bug number. Then create a Pull request.

New features

Before you fork please get in contact and let’s discuss, if the new feature you have in mind should go into baangt
standard functionality.

Welcome to baangt!

baangt is the new, open source test suite, that grows along with your requirements. From simple recoding based automation to
highly complex corporate environments: baangt is the solution. And if it’s not, it should be very easy to extend the solid
and well documented master functionality.

[image: _images/screenshotBaangtIA.png]
 [https://www.baangt.org]
Contents:

	 Installation
	Run the executables

	Install from sources

	Docker

	Install PIP-Package

	 Overview
	The fastest, simplest way to record test cases

	More powerful and still simple ways:

	Subclassing for multiply used functionality

	BaangtDB for flexible, powerful enterprise grade test automation

	To sum it up

	 First Steps
	Prerequisits

	Let’s dive right into it

	Tweaking the result

	 Structure
	TestStep

	TestStepSequence

	TestCase

	TestCaseSequence

	TestRun

	 Parameters

	 First API Test
	Steps to test the simple API Format:

	Activities for API-Tests:

	Special data fields in API-Tests:

	 Types of Tests
	Increment testing

	Heartbeat and Alive-Testing

	Regression testing

	Performance testing

	End to End (E2E) Testing

	Lifecycle tests of business objects

	No oversimplification

	 Data file

	 Results in Database
	Tables

	For Developers: ORM API

	 History
	Why open source?

	Built on the shoulders of giants

	 Contributions
	Documentation

	Bugfixing

	New features

	 Changelog
	2020.05

	2020.04

	2020.03

	2020.02

	2020.01

	 Planned Features
	Short/Medium term features

	Features for later

	PRO-Features

	 Browser Drivers
	New release of browser drivers

	Older releases of browser drivers

	 Variables
	Special variables for APIs

	Faker

	DataGenerator

	Input File

	Data Type

	All Data Types Format

	 For Developers
	Subclassing

	Debugging

	Plugins

	Network trace

	Building baangt sources

	What is a baangt-plugin

	how to make a baangt-plugin

	how the baangt-plugin work

	how to replace the existing plugin by your own one

	 :subheader: Articles
	 Production sucks

	 Test data rulez

	 Industries 4 baangt

	 Stop testing!

	 bAanGtILE

	 BugSoup

	 Canons, that are not DSLR nor music

	 SeleniumGridV4

	 Web [http://www.baangt.org]

Indices and tables

	Index

	Module Index

	Search Page

Autodocs

Autodocs:

	Autodocs
	Submodules

	baangt.base.ApiHandling module

	baangt.base.BrowserHandling module

	baangt.base.CliAndInteractive module

	baangt.base.CustGlobalConstants module

	baangt.base.ExportResults module

	baangt.base.GlobalConstants module

	baangt.base.HandleDatabase module

	baangt.base.IBAN module

	baangt.base.TestRun module

	baangt.base.TestRunExcelImporter module

	baangt.base.TestRunUtils module

	baangt.base.Timing module

	baangt.base.Utils module

	Module contents

	Modules
	baangt module

	baangt module

	baangtIA module

	setup module

	baangt.base package

	baangt.TestCase package

	baangt.TestCaseSequence package

	baangt.TestSteps package

	baangt.katalonImporter package

	baangt.ui package

Jump-start into worry free production deployments

You can try baangt right away and see how it works. It’ll take less than 5 minutes.

Prerequisits

	Chrome installed

	Python3 installed

	baangt installed (either via PIP or from the GIT-Repository at https://gogs.earthsquad.global/athos/baangt)

If you prefer running baangt inside Docker, use the Dockerfile from https://gogs.earthsquad.global/athos/baangt-Docker.
After downloading the repository, enter make build and then make run in the command line.
Once Docker is up, use SVN://localhost:5902 to connect. All features are exactly like you’d install everything on your local machine.

Let’s dive right into it

	Start baangt interactive UI by typing python baangtIA.py

	In the dropdown “Testrun” chose “SimpleTheInternet.xlsx” and click on “Execute TestRun”

	
	What’s happening here is pretty similar to a real world test case:

	
	Browser (in this case Firefox) starts up

	Navigate to a certain web page

	click on a link

	navigate back

	click on other link

	click on several elements of the page (e.g. buttons)

	write a report with summary and details about the test case. You’ll find the report in the root directory of baangt, unless you stated otherwise.

Extend the Script:

For this to work we recommend an XPATH or CSS-plugin for your browser.

Follow these steps to modify the behaviour of the test script:

	Open “SimpleTheInternet.xlsx” from the baangt root directory in Excel or OpenOffice

	In your browser with activated XPATH or CSS-Plugin head over to http://the-internet.com

	Choose one of the links, that you want to play around with and find the XPATH or CSS from your tool.

	
	Copy and paste this ID in the last line of the XLSX in column C (“Locator”).

	
	Column A (“Activity”) should be “CLICK”

	Column B (“LocatorType”) will be either XPATH or CSS depending on your tool

	Save the XLSX

	Execute the testrun “SimpleTheInternet.xlsx” in baangt again.

	Sit back and enjoy your victory!

Hint

If you want to be able to watch your browser executing each step, we recommend you set the parameter slowExecution with value True in Globals and re-run the test

Hint

If you want the browser window to stay open on errors and/or after execution, you can use parameter dontCloseBrowser with value True
in global settings and run the test again. The browser will stop on errors or when the test run execution stopped.

A bit further

Go ahead and try it out with your personal real-world example of a web-page, web-app or SPA, which you would like to have
reproducable regression tests for.

Of course you could basically follow the steps above, but depending on the length and complexity of the execution, you’ll
definitely enjoy having more tools in your toolbox:

Recording a test case with Katalon Recorder

Katalon Recorder is a free browser Add-on for Chrome and Firefox. Installation is simple, just google
Katalon plugin <your-browser> and install the plugin. After installation of the Katalon recorder follow these steps:

	Start the plugin

	Hit the “record”-Button

	
	Execute the activities you want it to record. Usually following these steps:

	
	Open a Webpage

	Login (optional)

	Navigate to some sub-page

	Click buttons

	Enter values

	Download documents (optional)

	Stop recording

Hint

You might want to execute the test case from within Katalon Recorder to make sure everything was recorded properly.

	Hit the export-Button of the recorder, chose format other

	Click “Export to Clipboard”

	
	Switch over to baangt and press the button “Import KatalonRecorder”

	
	The contents from the clipboard should be imported already and translation to baangt should be completed. If the clipboard was not inserted automatically, click on the button “Import Clipboard” and please drop a ticket stating your operating system incl. version and which browser you used for recording in Katalon recorder.

	Press “Save” and choose where you want to store the resulting XLSX-File

That’s it. You just created you first regression test case including all parameters for it.

If you’re wondering which parameters these are, and how you can influence them, fear not! Open the Testcase-XLSX from
the last step above, click on the “data”-Tab and start to enter values and lines as you please.

You can always re-run Baangt after saving your Testrun-XLSX and see your progress.

Hint

If you want to be able to watch your browser executing each step, set the parameter slowExecution with value True in Globals and re-run the test

Tweaking the result

You managed to have a working recording. Congratulations! Let’s learn a bit more about the structure of the created XLSX

Fields in Tab TestStepExecution

	Column Name

	Description

	Activtity

	Sets the activity of this TestStep. Activities are described in more details in next chapter

	LocatorType

	Most of the activities need a locator. We are big fans of XPATH as locatorType, due to speed and ease of use. Sooner
or later you’ll anyway end up needing XPATH, so why not use it always when there’s no downside? If you prefer
writing CSS-Paths then use value CSS for the locator. And if you are lucky enough to have unique IDs in your
page simply use ID.

	Locator

	The locator is the specification on which element Activity should happen. As in the value fields, you may
use variable replacement here too, in order to replace Locators with values from the data file. For instance the
following would work fine:
//*[@id($(CUSTOMERNUMBER))] - this would create an XPATH-Statement where $(CUSTOMERNUMBER) is replaced by the
actual value of the current test record.

	Value

	For instance activity SetText requires a value (The text to send to a Web-element). You may use fixed values
(which will rarely happen) or values from your test data source, in the simple cases the sheet Data .
The column names in the sheet data can be used as variable names (e.g. if you created a column “Quantity” in
your data tab, you can use $(Quantity) in the field value.

	Comparison and Value2

	For some activities (e.g. IF) you not only need the Value-Field but also a comparison operator and a
second field or value to compare to. Values for comparison are eq and =. The field value2
follows the same logic as value.

	Timeout

	Sometimes you might to overwrite the default timeout settings of baangt. Here’s your chance. Values in seconds,
decimals are OK (0.5 is a valid value, so is 90).

	Optional

	Usually when baangt tries to execute an activity and can’t (after timeout), it will throw an exception,
report in the Logs and stop the current test case. If you set optional to True or X, baangt
will continue execution of the test case, even if the activity wasn’t possible.

	Release

	Often you’ll face situations, where you want to run a test case in several stages (e.g. DEV, Pre-Quality, Quality,
Migration, Pre-Production, etc.) and the software version on each stage is different. A test case, that works on
Pre-Production will not pass on Dev-System as Dev is already further developed. If you change the test case to work
on Dev-System and you need to test a Hotfix deployment on Pre-Production, what will you do? In other test solutions
you would “simply” copy your test case, have one version for DEV, one for Pre-Production. Do that with hundreds of
different test cases and watch yourself drown in chaos. OR you could use baangt where this problem is solved.
Software moves through the stages of your system landscape as it evolves. Use this field to conditionally execute
different “branches” of your test cases, depending on the version on the current stage. Release can be any
string value. You can add “> ” “< ” and “= ” as the first 2 characters to signal to baangt to only execute
the step when current release is greater than, lower than or exactly equal to the value afterwards, for instance

> 2019.05

will run the line only, if the Version is 2019.05a or 2019.06. We are aware, that your version numbers might
follow different nomenclature, so we made it very easy to subclass the corresponding logic.

More details on Activities

Details of activities

	Activity

	Description

	GoToURL

	Navigate to the given URL. Column Value must provide the URL. You might want to use variables in your URL-String,
for instance your URL might look like this https://$(STAGE).earthsquad.global/. It will be replaced
during runtime of the test data with the value of STAGE from either Global settings or settings in the
testCaseSequence.

	click

	Will click on the object specified by the locator.

	clickIF

	Will click on the object specified by the locator IF the field in testDataDict, that you enter in Column value
has a value. This small and simple extension can save you hours and hours of work in maintenance of testcases.
Imagine you have 10 checkboxes, that in various combinations provide different test results, and you have to test
all possible combinations. Using one column in your datafile for each checkbox and the clickif, you can create
your testCases in minutes instead of hours or days. Imagine 50 checkboxes - with baangt your effort is still
just minutes.

	setText

	Write the text given in column value to the element specified by locator. Only rarely will you have fixed
values. Usually you’ll assign columns of the test data using variable replacement (e.g. $(POSTCODE) to set the
text from column POSTCODE from the datafile into the destination element.

	setTextIF

	Same as SetText, but will only do something in cases where there is a value in the datafile. Similarly to clickIF
this little helper functionality can help you save hours and hours in creation and maintenance of rocksolid and
bulletproof test cases.

	goBack

	Trigger the “back”-Button of the browser.

	If/Endif

	The block between IF and ENDIF is only executed when the condition evaluated by value|comparator|value2 is
true, for instance:

$(POSTCODE) = 7040

$(YEAR2DATE) > $(YEARTOMONTH)

$(POSTCODE) (no comparison, no Value 2) –> checks for

Additionally you can check for empty/non-existing values by comparing to None.

Another use of the If-Statement is with LocatorType and Locator and comparison. This can be used when you
want conditional execution of a larger block of statements depending on an element present or not present.

	assert

	Will retrieve value of element specified by locator and compare with reference value from value.

	pause

	Will pause for the number of secons in value. Valid numbers are float, e.g. 2, 0.2, 0.1, 25

	iban

	Will create a random IBAN account number. value 2 is the destination field of the test case structure. If you
don’t provide a field name (not necessarily one that exists in the input file. Can be any field name!) nothing will
happen. If you provide input parameters in column value (SWIFT and/or COUNTRY) the IBAN will be created for that bank-code
and/or country.

	pdfcompare

	In a step before you must have downloaded a PDF-File. Before you can compare, you have to provide a reference PDF
to upload. After the upload you’ll receive a unique ID for this document. Paste this ID into the value field.

	CheckLinks

	Whenever you enter this command, all (if any) links on the current page will be checked and the status of the
link will be reported accordingly. Reporting format is:

Links on <base_url>:

<status>:<Link>

You’ll find the output in the Export sheet in the column “CheckedLinks”, which will be created automatically.

	saveto (for Web test cases only)

	
	Saves the value of the element specified by locatorType and locator into the field given in column value.

	!!For this case, don’t use variable syntax ($(ColumnName)) but put the column name only in field Value!!

	clear

	Value must have the variable or column name, that should be cleared (without $(columnName),
just columnName

	switchwindow

	Switches to a browser window. Value is the number of the window, that you want to switch to.

	setanchor

	There are pages, where you’ll not find good unique IDs or no nice way to locate elements. Setting an anchor can
help in these cases. An anchor is an element, that can be located by CSS, ID or XPATH. After the anchor is set
all future tries to locate an element will happen within the children of the anchor.

To unset an anchor use setanchor without locator.

setanchor can also improve the location performance, if you’re dealing with really large pages.

While an anchor is set, ALL location attempts of elements happen within the anchor’s children. If you want
to avoid that, use `///` (= 3 slashes instead of 2) to signal the logic to ignore the anchor.

	address_create

	provide an easy and easily extendable way to generate address data for a test case
The following fields variable are stored in testcaseDataDict:

CountryCode
PostalCode
CityName
StreetName
HouseNumber
AdditionalData1
AdditionalData2

	value optional

	Default field-value: {‘HouseNumber’: ‘6’, ‘AdditionalData1’: ‘Near MahavirChowk’, ‘AdditionalData2’: ‘Opposite St. Marish Church’, ‘StreetName’: ‘GoreGaon’, ‘CityName’: ‘Ambala’, ‘PostalCode’: ‘160055’, ‘CountryCode’: ‘India’}

These fields can be used as filter criteria in field value.
Example value= {CountryCode:CY, PostlCode: 7}.

Resulted field-value :{‘HouseNumber’: ‘6’, ‘AdditionalData1’: ‘Near MahavirChowk’, ‘AdditionalData2’: ‘Opposite St. Marish Church’, ‘StreetName’: ‘GoreGaon’, ‘CityName’: ‘Ambala’, ‘PostalCode’: ‘7’, ‘CountryCode’: ‘CY’}

value2 optional
If a prefix was povided in field Value2, the fieldnames will be concatenated with this prefix,
e.g.if value2=`PremiumPayer_`, then the resulting field for CountryCode in testDataDict would become PremiumPayer_CountryCode.

Agile: Where does baangt fit in?

baangt supports all your agile mindset ever dreamed of - you can start right away with TDD, where you create Test-Cases before you
even write code (Just don’t forget to set the test case version number to a future version).

Increment testing is the next logical consequence, where you’ll use your test cases defined in the previous step to verify
results from the current sprint. Once run, optimized and stable you’ll want to keep the system at least at this good state,
so you’ll want to enrich your regression test set with those successful tests from your last sprint.

On the unrelated subject of negative test cases:

Don’t forget how important negative test cases are. Those are test cases, where you need the system to stop
processing, because it is not supposed to accept a value or process or state. baangt makes this very simple for
you! Define your parameters as with any other test case and set value of TC Expected Error to X. That’s it,
baangt will be happy, when the testcase fails and raise an error, when the test case is successful.

In CDCT and Service tests (parts of the testing pyramid) you’ll use the API functions of baangt to
ensure stable and proper outcome from your (micro-)services.

Finally in E2E-Testing baangt will help you to organize and keep track of your complex E2E-Scenarios where
you might start with mainframe or SAP-Systems to create master data, then change to WEB to use the created master
data in your frontend test cases and finally call some APIs to verify results in the backend systems were as expected.

We can do that with every software, what’s so special about baangt?

Thanks for asking. Well, you might be able to achieve that with expensive software like Tricentis Tosca or HP Runner, but
think again. How long does it take you to transfer information from business department via IT-Guys to the test automation
planners, experts, implementers and testers? Is the test case still relevant by then?

With baangt being free and open source and mostly depending on MS Excel you don’t have expensive nor complex
client installation procedures. Everybody in your organization can record test cases and run them for validation
by themselves. You’ll still want to keep your skilled guys in central test automation or central test management, but
how much faster will they be? How much better will your regression test rate be and how much more motivated will the whole
organization be, when things start to move faster than they’re now (if you’re still moving at all)?

Anything missing? Let us know! Interested? Go for it!

Not Exactly Documentation

This section contains articles, that are not exactly documentation. Some are more like a blog, others are copywriting.

Contents:

	 Production sucks

	 Test data rulez
	What do we use instead of random generated data?

	That’s all nice, but it won’t work for us because …

	tl;dr

	 Industries 4 baangt
	baangt in Banking

	Insurance and baangt

	Production with baangt

	Key Takeaways

	 Stop testing!
	How to improve the situation

	It’s raining soup - with bugs

	 bAanGtILE
	We can do that with every software, what’s so special about baangt?

	 BugSoup
	#1 a lot of wrong shoes in wrong places

	#2 A sudden wealth

	#3 You don’t pay - we tow your car!

	#4 Material master records - what are they for anyway?

	# What are these chemical elements anyway?

	Summary

	 Canons, that are not DSLR nor music
	Abstract

	Isn’t everything asynchronous?

	Deep dive on test Canons

	How it fits all together

	 SeleniumGridV4
	Ready for your own tests

	Step by step instructions on video

Asynchronous vs. Canon tests

Abstract

Whenever you can’t grab the verification of your test assumption right away, you’re in an asynchronous scenario. When
you have an End2End-Scenario where this happens in more than one steps, you could consider setting up a test Canon.
Borrowed from music, a test canon will start with one test case until the halt condition is reached. Once the case can
continue (e.g. because a trigger arrived), the canon will not only continue to run the first test case in it’s second
step but also start a new initial sequence of the same test case.

Isn’t everything asynchronous?

By nature basically every test is asynchronous, because we always wait for a reaction of the System under test. In most
cases, we’re talking about Microseconds up to a few seconds. You’ll not do anything special with waiting times up to
a few seconds. As you run anyway 50 or 500 parallel sessions, it doesn’t really matter. But what if we need to wait
for e.g. 10 Minutes, 30 Minutes, 8 hours? We shouldn’t waste resources (like CPU-Time and blocked processes) to wait for
extended times.

Polling vs. Events

Polling means to have your currently active test case poll repeatedly for an event in a more or less fixed timely
interval. That’s nice for smaller waiting periods and smaller installations. When you run with 500 parallel sessions and
you query a service every 500 ms for a specific answer you may create a unrealistic load to that service. You also
consume resources of your test environment, which are then not available for other tasks. For baangt we recommend
to use polling for expected short waiting times (several seconds up to minutes) - but that’s not a hard rule. YMMV.

Events (aka Callbacks) are the opposite. Your test case pauses and doesn’t do anything until an external trigger
appears. Of course callbacks are more difficult to implement as you not only need to query a service repeatedly, but first
implement a callback service as well as the call to the callback service (even when it’s done via Kafka or Redis).

These callbacks are additional components of your system landscape, that need to be developed, tested and maintained.

Deep dive on test Canons

What is a test Canon? It is basically the same concept as a canon in music for a combination of asynchronously executed
test steps over and over again in order to have one test result for each test step at any given time slice.

From Wikipedia [https://en.wikipedia.org/wiki/Canon_(music)]:

In music, a canon is a contrapuntal (counterpoint-based) compositional technique that employs a melody with one or
more imitations of the melody played after a given duration (e.g., quarter rest, one measure, etc.).

See the music canon in action on Youtube [https://www.youtube.com/watch?v=S9MN2WeqFY8]

How does it apply to testing processes?

Imagine the following (simplified) test case sequence (in combination with a mainframe or SAP-System):

	Create material master data in Backend. Validate: Material available in online shop (asynchronous)

	Create sales order. Validate: Increased demand in material resource planning (batch)

	Create delivery and shipping. Validate: Reduced stock of materials (asynchronous)

	Create invoice. Validate: Invoice amount posted to A/R (batch)

	Create payment. Validate: Open item closed (batch)

	Create goods return. Validate: Special quality stock increased (asynchronous)

	Create credit note. Validate: Amount of credit note in A/P (batch)

	Create outgoing payment. Validate: Open item closed

In this example there are 4 batch processes, that we need to wait for before we can tell, whether the whole E2E-Scenario
works or not. Without any measures this means to wait for 5 days until we have a test result. Real use cases are not that simple and would
take longer. Back in the days when there was a month of User acceptance test (UAT) this was fine. Now with always shorter
release cycles you can’t survive without new approaches.

How the test Canon works

	Canons and

	D

	A

	Y

	S

	/

	E

	X

	E

	C

	Teststeps

	1

	2

	3

	4

	5

	6

	7

	8

	9

	Canon 1 - Teststep 1 + 2

	X

	
	
	
	
	
	
	
	

	Canon 1 - Teststep 3 + 4

	
	X

	
	
	
	
	
	
	

	Canon 2 - Teststep 1 + 2

	
	X

	
	
	
	
	
	
	

	Canon 1 - Teststep 5

	
	
	X

	
	
	
	
	
	

	Canon 2 - Teststep 3 + 4

	
	
	X

	
	
	
	
	
	

	Canon 3 - Teststep 1 + 2

	
	
	X

	
	
	
	
	
	

	Canon 1 - Teststep 6 + 7

	
	
	
	X

	
	
	
	
	

	Canon 2 - Teststep 5

	
	
	
	X

	
	
	
	
	

	Canon 3 - Teststep 3 + 4

	
	
	
	X

	
	
	
	
	

	Canon 4 - Teststep 1 + 2

	
	
	
	X

	
	
	
	
	

	Canon 1 - Teststep 8

	
	
	
	
	X

	
	
	
	

	Canon 2 - Teststep 6 + 7

	
	
	
	
	X

	
	
	
	

	Canon 3 - Teststep 5

	
	
	
	
	X

	
	
	
	

	Canon 4 - Teststep 3 + 4

	
	
	
	
	X

	
	
	
	

	Canon 5 - Teststep 1 + 2

	
	
	
	
	X

	
	
	
	

	Canon 2 - Teststep 8

	
	
	
	
	
	X

	
	
	

	Canon 3 - Teststep 6 + 7

	
	
	
	
	
	X

	
	
	

	Canon 4 - Teststep 5

	
	
	
	
	
	X

	
	
	

	Canon 5 - Teststep 3 + 4

	
	
	
	
	
	X

	
	
	

	Canon 6 - Teststep 1 + 2

	
	
	
	
	
	X

	
	
	

	Canon 3 - Teststep 8

	
	
	
	
	
	
	X

	
	

	Canon 4 - Teststep 6 + 7

	
	
	
	
	
	
	X

	
	

	Canon 5 - Teststep 5

	
	
	
	
	
	
	X

	
	

	Canon 6 - Teststep 3 + 4

	
	
	
	
	
	
	X

	
	

	Canon 7 - Teststep 1 + 2

	
	
	
	
	
	
	X

	
	

	Canon 4 - Teststep 8

	
	
	
	
	
	
	
	X

	

	Canon 5 - Teststep 6 + 7

	
	
	
	
	
	
	
	X

	

	Canon 6 - Teststep 5

	
	
	
	
	
	
	
	X

	

	Canon 7 - Teststep 3 + 4

	
	
	
	
	
	
	
	X

	

	Canon 8 - Teststep 1 + 2

	
	
	
	
	
	
	
	X

	

	Canon 5 - Teststep 8

	
	
	
	
	
	
	
	
	X

	Canon 6 - Teststep 6 + 7

	
	
	
	
	
	
	
	
	X

	Canon 7 - Teststep 5

	
	
	
	
	
	
	
	
	X

	Canon 8 - Teststep 3 + 4

	
	
	
	
	
	
	
	
	X

	Canon 9 - Teststep 1 + 2

	
	
	
	
	
	
	
	
	X

How it fits all together

In baangt we have test case status paused for conditions of longer asynchronous waiting times. Each test case has
a unique identifier, that enables external callbacks or triggers to resume a certain test case after it was paused and
the precondition for continuation was met.

Prerequisites to run test canons in baangt

	implement the triggers which will call baangt service “resumeTestCase” with the unique ID of a test case

	baangtDB (onsite, in the cloud or serverless)

baangt In Industries

baangt is versatile and useful for producers and consumers of software from all walks of life. Some industries though
have specific needs, that are especially well addressed by baangt out of the box.

baangt in Banking

Banks often have large system landscapes, diversified customers and products. It often looks like each individual
customer has it’s own set of parameters and business processes within the bank`s organization. KYC-Initiatives,
PEP/FATCA compliance and a lot of regulatory demands must be fulfilled. On the other hand apps and online banking bring
direct communications with end customers. It’s nearly impossible to test all processes in all combinations before a new
increment is released to production.

This huge complexity and vast amounts of test cases make it an ideal environment for baangt to shine! Closer
collaboration between IT-Departments and business people helps to avoid misunderstandings and find different interpretations
of requirements early in the process - and long before reaching production systems.

Creating test cases in simple Excel sheets and communicating based on those expected results will streamline test
processes and support project organizations to deliver better results in shorter time.

Insurance and baangt

Insurance is like banking on steroids - at least when it comes to complexity of the products, processes and system
landscapes. Due to the variety of products (Life, P&C, Health, Car/Automotive) and the completely different processes
for each of the product lines testing in insurance companies is complex and challenging. As in many other industries
trends of recent years like off-shoring, near-shoring and outsourcing lead to less understanding of the business needs
by service providers but also to less understanding of the underlying complexity when service providers extend or change
existing code bases, which makes testing even more important as side-effects are more likely than back in the days when
the internal IT people of the company knew exactly what they were dealing with.

Business departments especially during the last 5 years, but also for the next 5-10 years face challenges due to
overaged work force. Companies manage to bring in young talents to take over the responsibility of insurance
products development and maintenance of existing product landscape. At the same time they are competing on a global market,
operating inside a strictly defined legal range of options, need to cut costs and innovate products to fit modern customer
needs.

In this challenging, complex environment baangt helps by providing a simple yet powerful option for business
experts to define, maintain and run their test cases. This option eliminates prolonged misunderstandings between
IT-People and business department, increasing velocity for both sides and at the same time improves overall system
stability, reduces TCO (Total Cost of Ownership) and enables organizations to have faster time to market - a parameter
very important in todays dynamic insurance landscape.

Production with baangt

Now we’re talking about companies, who use machinery of all kind and production optimization flows to produce high quality
goods at competitive prices. The more flexible your machinery and the more steps a production cycle includes between
customer order and paid invoice, the greater the need for baangt, assuming that as many steps as possible are
automated.

While in banking and insurance it’s very common to have complete copies of system landscapes for development, migration
and test, this rarely is the case in production companies - given that the various robots and machinery are usually
running in shifts 24/7. Common approaches for those companies to update their landscape are planned downtimes (e.g.
“Easter-” or “Christmas break”) when they stop production, upgrade all parts/software as planned and then slowly restart.

Other production companies take down “lines” (a more or less logical group of machines, that perform a sequence of work),
often only for a few hours for upgrade processes. The secret to successful testing strategies in such environments is to
mock.

Mocking is a technique in test automation, where we replace actual interfaces with synthetic data.

When we plan a large scale system upgrade we also test in variations of what might happen. E.g. the upgrade on Unit 6
will brick the engine, so we’ll have to reset Unit 6 to it’s previous conditon, while the rest of the plant is upgraded
as originally planned. Will this work? If you have to guess whether this (not so uncommon) set-back will jeopardize the
whole upgrade of a plant and cause additional unplanned 2 weeks downtime, Millions of losses for the company, workers
who can’t earn money for their families, etc. and you are in charge, then you didn’t do a great job. With baangt
you’d have used old and new mocks or stubs of those interfaces. Depending on the test results, you’d either have informed
management about the elevated risk when the upgrade of Unit 6 goes wrong, or you’d be very relaxed because instead of
guessing and hoping, you’d know, how the failed upgraded will influence the overall upgrade of the plant.

Key Takeaways

baangt is no silver bullet, nor does it do the work for you. Using baangt may actually cause more work on the
short run, in case you didn’t automate any critical processes so far.

The more variables in your business processes and/or products, the more you should have a look at baangt.

Why On Earth Do We Have Bugs In Production?

We all hate bugs in production. They’re a pain for everybody. Devs, Management, Customers, Infrastructure. Given a
big enough scale many departments can be heavily effected by a single bug. That costs dearly and can be avoided in most cases.

In this article we’ll look at real bugs, that managed to reach production and see, if proper testing could have avoided
these bugs.

#1 a lot of wrong shoes in wrong places

Task:

A new algorithm for a large shoe producer was built. The aim was to predict how many of which shoes will be sold in which
areas, deliver from the central warehouse to regional distribution centers, optimize loading of trucks to dispatch pallets
to local stores (e.g. load pallets for the last shop on the tour first into the truck).

The result:

Let’s put it like this: Chaos. Not like “Chaos! We’ve a record in the database missing”. No, more like “Chaos: Trucks all
over the place are carrying wrong shoes to the wrong stores. It will take months to sort this out”. Chaos. Alone the cost
for the truck loads being brought back, repacked, reshipped would have paid 10 more testers, let alone missed sales.

What happened:

The algorithm was developed based on old/incomplete data and old data structure. The testers worked on a small region
and only with one model of shoes, as creating all the test data manually was time consuming and given the short time, they tested, how it would work in 1 shop.
It worked well. In the algorithm itself only one clear was missing.

How this could have been prevented:

With intelligent test automation testers could have created more sample data in less time (e.g. record 1 shoe model,
then alter the parameters of the test case and automatically create a reasonable number of shoe models).

#2 A sudden wealth

Task:

Company A buys company B. A quick win to reduce costs and merge applications is to let invoicing and cash flows run on
Company A. 60k contracts. Monthly invoicing. What could go wrong?

The result:

First, there were more bounced direct debits as in other months. Well, X-Mas time, people overspent for presents. All good, right?
Well, no. A few days in after the “successful” first step of the merger, first level support showed an increased number of
calls, mostly furious people, who were charged 10 to 100 times their usual monthly fee - often via direct debit and that
during X-Mas time. If that’s not a SUPER-GAU, then what is? News papers got tips and printed accordingly about the scandal,
when a multinational corporation robs from working class people who now don’t have any means to by presents for their kids. Great!
“What could go wrong?” –> That!

What happened:

One date field mapped wrongly in the interface between the invoicing application and the contract application. BEGINNDATE
vs LASTPAYDATE. The error was in there since the first test on final quality system. It was found and fixed in 10 minutes.

Test data was complex to be created and proper data from production couldn’t be copied (lots of reasons, GDPR was not one of them).
Testers created contracts by themselves and created max backdated to beginning of the year. Then, in order to save the hussle of having to create too many new contracts manually,
they started invoicing on a monthly basis, different than the batch job setting in production, which would take all open
items and collect using the appropriate payment method.

How could this have been prevented:

Test data was too complex to be created. Unrealistic manually created test data is the worst. It gives you false security when in reality you’re totally blind.

#3 You don’t pay - we tow your car!

Task:

In many million records of business partners find duplicates, move contracts from the duplicates to a main account,
flag duplicates for deletion.

Simple, clean. In and out in 60 minutes.

The result:

Cars were towed and unregistered. Collection agents doing their jobs but at people who actually paid their bills.

What happened:

All went well, the task was completed in record time, tested all combinations of possible partner data, all good. Wonderful!
But. The task and the tests were done on the system, that deals with business partners. With every duplicate found in the
partner system the contract system was informed about the new partner number, which replaces the old number on a specific
contract. In collection system the payment went to the new partner number. Unfortunately the unsettled amounts were also
cleared with the new number and the unsettled amount on the old partner number remained open forever. Thanks to the automatic
dunning process including escalation cars were towed - as according to the system - these folks didn’t pay their bills.

How could this have been prevented:

Honestly, that’s a tough one, even if you have great test coverage and full scope E2E-Tests in place. Which normal company
would go to the length of creating bank payment interface to see, that the unsettled amount wasn’t cleared? Of course, a
senior solution architect could have foreseen this outcome.

#4 Material master records - what are they for anyway?

Task:

A table on Oracle SQL exploded because customer added too many fields into the table. Whatever. Other tables had also
reached similar sizes, so transform those fields into key/value-pairs and store in a separate table with reference to the
other tables. 10 tables, a few million records, easy going. 4 hours tops. A little testing on FQA, then run over the weekend
in production.

The outcome:

Material master records are pretty important for a production company. Not as important as customers, but pretty important.
After this job, they didn’t have any (while 1000s of interface records from suppliers and customers were coming in). The fix
was provided within a few hours from a coincidentally setup parallel system, but this could have gone very bad.

What happened:

Functionality was tested. Functionality worked fine (new table was filled with data and displayed and linked properly). Clearing
of the data fields also worked perfectly, but was a bit overmotivated. Everything except the key field was cleared. One
code line changed and it worked. There were practically no tests - because “What could go wrong on such a quick fix?”.

How could this have been prevented:

Even the simplest functional test would have immediately thrown an error. All Unit-Tests were OK and for this customer
there are (were) no functional tests.

What are these chemical elements anyway?

Task:

Upgrade a mass spectrometer to latest firmware. Come ooon, that’s a job for a junior!

The outcome:

Just a few 100k bugs of wrongly melted raw material. Nobody harmed, no outside consequences (by chance only!).

What happened:

Before the update, the spectrometer had fixed decimal places in a number. After the update, decimal places were floating.
The interface with the material robot, who’d add missing raw material into a boiling soup of metal based on the chemical analysis, was used to fixed decimal
places and thus went wild on adding different components to compensate for each result of the mass spectrometer. Luckily
after 30 hours of boiling the shift supervisor understood that something is wrong

How could this have been prevented:

First it looks like it’s an easy one, but it’s not. A pure technical test would have not found that problem. If one would mock
away the spectrometer in the first place, it would also not show up. The only way to find that, would have been to
test the output of the spectrometer with a reference material against the output after the update. But that’s nothing,
that can be automated.

Summary

Most of the severe bugs described here could have been found easily, others not so easy. In any case, every bug that
was found on lower stages and never reaches production is much cheaper for the whole organization, so get ready to use
baangt to increase test coverage and subsequently overall quality!

Beware of data generators

In time of big data and machine learning when we see the difficulties to find proper data for test automation we’re tempted
to turn to the silver bullet “RPA” (Robotic Process Automation). Solutions grow like mushrooms, all with the intention to
reduce effort for test data creation and test case maintenance.

We also use test data generators in baangt, very well dosed, very carefully and never to assess, whether the AUT
(Application Under Test) is suitable for production. We use test data generators based on users data recordings to harden
the application in early stages. We’ll “play” around (automatically), perform random clicks in random orders on buttons,
extend each field to it’s maximum length, fill traditional chinese characters into arabic text fields and similar tests.

That’s a valuable excercise. It helps to harden the application before the masses of end-users will try
to beat it down. But we use those tests not in daily or weekly regression tests or when we assess the latest build or
increment.

What do we use instead of random generated data?

Beautifully, precious, manually designed and recorded test data from the business department (preferably key-users or even
power end-users). We extend the dataset whenever a new issue arises in the production if in the post-mortem phase of
the issue it turns out, that regression testing could have identified the issue with proper data.

As this test set grows in lines, it grows in value. After a few weeks you’ve covered tests for all your major business logic
within the test set. Depending on your product cycles it might mean a hell of maintenance effort (e.g. if your pricing changes
every hour or day, you’ll either subclass the assertion methods with your own logic or you’ll be miserable updating 1000s
of comparison values in the test data), but this effort might very well lead to keeping customers (as opposed to losing them
to competition, if your software is unstable), supporting your whole organization to deliver the highest possible performance
(by having reliable software and processes in place).

That’s all nice, but it won’t work for us because …

The more you depend on software and the more complex your software and processes are, the less I believe, that it is
not possible in your case to run your regression tests with meaningful and reliable test data. Here’s a list of rather
lame excuses. If you use any of them, please think again.

Anti-reasons for bad test data

	Excuse

	Rant

	Grip

	too complex

	The software and processes are too complex. We’ve trillions of combinations. It would take months to test all that
and in the end we anyway wouldn’t know, whether the results are right or wrong.

	System landscapes - especially grown ones - can be really complex. But at least try to find a good starting point
by combining a few, beautifully crafted test cases and validation rules with ML Data expanders. It’s better than
nothing and as your system stability improves and you need less time to fight fires in production, you’ll gain time
to invest in improving your test data. You can start an uplifting spiral!

	no real data

	We don’t have good quality data in our stages.

	Often you’ll need basic or master data before you can test variations of transactional data. In a production company
you’ll need material master data of raw materials, customer master data, vendor master data and much more before
you can test your shiny new plant optimization system. But there are more benefits in investing time to create all those
prerequisit master data automated.

	You can use this high quality data also for many other processes (billing, dunning, campaigning, MRP)

	After the next system copy, the same quality data is just one click away

	You can produce the same quality data for test clients, migration machines or wherever else you need them

If the mountain of work is too big to tackle it all at once, slice it down to reasonable chunks. Identify, which
data set has the highest value in terms of data quality/reliability of test case output and start with these.
A classical example are customer master data. All your test cases are with “John Doe”. First real customer record
without a ZIP-Code or strange address format for a certain country, phone number format, etc. breaks your tests.
Don’t be like that. Or at least don’t be surprised, if it happens to you. Having a few hundred different customer
master records, that you use in your test data base and recreate every now and then doesn’t take much of your time
but provides a great deal of increased reliability of your test activities.

	changes too fast

	Our internal and external customers are in need for speed. We can hardly finish the features we need to provide on time,
let alone test them in E2E-Scenarios. No need for additional overhead. Our developers know, what they do!

	Good example of “famous last words”? Regression tests don’t need to run forever. Usually one would have approx.
10-15% in pure (and slow) UI-Tests, 40% of (faster) API-Tests and rely for the rest on earlier test stages (like unit tests).
The less tests you execute, the higher the need for spotless and realistic test data! Yes, of course you can (and should)
combine various test parameters into one E2E-Testcase (e.g. a specific/problematic country code with uncommon
payment terms and a reopened order (instead of a freshly created one)). Better define a reasonable time frame for
regression tests (given the fact, that they should run automatically, maybe a nightly build gives you 2-3 hours?).
Then see, which systems take how long for each test case combination. Based on the time frame, the approximate number
of testcases and the throughput you’ll understand, if and how much you need to run in parallel. With baangt you’ve
the ability to run multiple TestCases in parallel and still receive exactly one result set.

	Maintenance efforts too high

	Our changes are frequent and fast. We tried to use test automation, but we ended up spending more time with the automation
then in development and in the end the reliability of the results was not worth the effort we invested.

	Understood. It is in fact true, that UI-Tests tend to need higher maintenance efforts than API-Tests. In baangt
we addressed the problem of maintaining test case version with a simple and pretty versataile solution. If you need a
test case to run on different software versions, which behave differently, you can simply adjust the “Release”-field
in each Teststep (those, which are new from a certain release and those which are obsolete from a certain release, all
others remain unchanged). Instead of having to have many different versions of testcases in parallel (and potentially
the need to maintain all of them!) with baangt you’d have only one - unless you completely replace something
(e.g. you replace credit card payment screen completely with payment by PayPal - then you’d most probably create
a new testcase called “PayPal”).

	‘Difficult to obtain data’

	We need real data, but it’s hard to come by. We’ve validation on Phone-Numbers, IBAN, BIC and many other fields,
so we need to enter real data in test cases. But we don’t have it and we don’t want to use data from production!

	At least you’re not using your customers data for test - that’s great! Indeed for some data it’s pretty difficult
to obtain valid test data - most of the time based on the reasoning, that if the mechanism to create valid data
was made public it would support criminal activities.

If you encounter such a need you’re in bad luck and your rant is granted. I assume, that your developer and API-Tests
mock this interface/data anyway, so you did the maximum possible.

In other cases you can use existing functionality and libraries (e.g. baangt support valid IBAN/BIC creation
dynamically out-of-the-box) to create valid test data and find errors long before your customers do. If you come
across the need for data, that is difficult to obtain (but legal!), contact us with a feature request on the public
issue tracker. Maybe somebody will pick it up and provide a solution in baangt base functionality.

tl;dr

Build realistic synthetic data for your regression tests and take good care of it. Also, for every bug found in production
enhance your test set!

Why your production sucks and how to fix it

Sounds familiar? When you sort your defects/incident list for the next sprint, you abandon priority concept (1, 2, 3)
and start experimenting with negative numbers? -1, -2 -3 where -3 are the ones where you’ve to report to the CIO every day? And your sprint capacity is full before you even reach priority 0?

Each day/week when you’re supposed to ship the most important hotfixes to production you suddenly beome religious and pray
intensively for 30 minutes? But the universe doesn’t listen to you and 30 Minutes after deployment hell breaks loose
because you again bricked the production?

First of all: Breathe! Help is on the way!

Changing your religion will not improve your situation (unless you go “all-in”,
start as a full-time monk and leave software development forever.). You are not alone.
I’d guess, that at any given second of the day at least 1000 people pray for good deployment results or are
at least worried about the current deployment (and the next. And the next.). It’s
a phenomenon that we had already in the 1990s, just the impact back then was never as huge as it is today. There existed
manual fallback processes in all companies. Nobody “needed” the IT. If you had a bad deployment and needed to rollback and it
took one week to do so, it wasn’t the end of the world, the company or you.

Today is different. I’m pretty sure even if facebook would go down for a week, the world would still turn. And facebook
wouldn’t cease to exist either. But I’m not so sure about a few 1000 people, who’d be responsible for the mess.

Well, let’s not focus on what could happen (and usually happens because Murphy’s a very special friend to many people in
IT), but rather see, what we can do about it.

We all know, that there is test automation, which should theoretically give us enough insight on lower stages to prevent faulty deployments ever reaching production. Bugs get costly (monetary as well as regarding our reputation) once they reach our partners (customers more than suppliers).

Tricentis Tosca is the market leader and has been around for a while. So have the solutions from
HP and many others. As good as these tools are, in order to gain value from them you better follow their suggested processes,
none of which would be suitable for your business department or your developers. So both parties, who are in pain when deployments
don’t work have no direct interface to the tool, that should help them. There are test-engineers, test-planners, test-designers,
test-executors and most probably repelled DevOps involved in automation testing, but not the business department and not
the developers. That’s critical from my point of view, because those processes build a barrier, that prohibits automation testing
to fulfill it’s potential in today´s organizations. It’s not fast nor efficient to artificially build an additional step
between business and their developers.

Enter: baangt. Leightweight, fast, simple. Easy to use for business deparments, fast and flexible for developers (they
even get to play around with beloved JSON-Files) and mature enough for established Delivery organizations to fulfill their
needs of reporting, integration, test coverage statistics and much more.

Before you try every sect on the planet give baangt a try. If set-up and used properly, this tool has a good chance
to make your life easier - no matter in which role you are right now.

Great. You’re still reading. Before you try to convince your manager about the tool, let’s see some common resistance patterns
and how to overcome them.

	Resistance

	Assistance

	Sunken Costs. We just renewed the license for <whatever>. I’ll look like a fool when we’ve a better tool for free!

	baangt can be integrated via API-Interface to all “professional” software. You don’t need to kick out all your automation people. Get familiar with baangt and see, how you like it. Whenever your next renewal period for the license of the professional software comes up, you might even have an additional fact for reasoning

	Security Audit. You know, how hard it is to convince people from internal IT department to deploy a new piece of software

	baangt is open source and has little dependencies. baangt can be run in a Docker environment for execution, while testcase management happens in Excel. Shouldn’t take them too long to approve baangt because they can review every aspect of the application

	not another tool. We’ve already too much on our plate with the whole CD/CI-Stuff, K8s, Eclipse, IntelliJ and everything else!

	Exactly. One more reason to bring around simple, reliable test results. How else will we ever know, whether the latest build will crash production or not?

	Test engineers can never be replaced by people from business department.

	If you give them a simple enough tool (how about an Excel sheet?) and the outlook to receive a more reliable production stage, you’d be amazed to what lengths those people from business department can go! Just give it a try - it doesn’t cost anything.

Integration with Selenium Grid V4

baangt [https://baangt.org] has now integration with Selenium Grid V4 [https://github.com/SeleniumHQ/selenium/wiki/Selenium-Grid-4].

Following the same logic as with integration of Zalenium [https://github.com/zalando/zalenium] and current
version of Selenium Grid [https://www.guru99.com/introduction-to-selenium-grid.html] you can define your test cases
and test data definitions in Microsoft Excel using simpleFormat, full Excel format, baangtDB or subclassed TestStepMaster.

The only difference is setting the Browser to REMOTE_V4. Of course you’ll need to provide address and port of the
service in BrowserAttributes.

Ready for your own tests

Even if you don’t have a shiny Selenium Grid V4 Cluster on your own, you can simulate it using our Docker image. Just
download the repository [https://gogs.earthsquad.global/athos/baangt-Docker-SeleniumGrid4], e.g. by using git clone.
Once it’s downloaded use make build and make run to build and run the container. vnc://localhost:5902 will
grant access to the Desktop inside the container.

[image: ../_images/vncDesktopSeleniumGridDocker.png]
 [https://gogs.earthsquad.global/athos/baangt-Docker-SeleniumGrid4]

Step by step instructions on video

If you prefer to see a video with details on how to run and test baangt with Selenium Grid, head over to our youtube
channel: https://youtu.be/hpY9E-t55q4

[image: ../_images/thumbnailYoutube.png]

Stop testing software…

… only. Also and foremost test business functionality. In today’s semi-agile and agile environments we fortunately improved testing
in all stages of the development process. Nobody would dream to deliver software without unit-tests, service tests and
consumer driven contract testing is hip and most companies even have (more or less) End-2-End (E2E) tests. Nevertheless
we still see loads of bugs once the software reaches production.

These bugs slow us down. They cost millions of hours every day, that could be spent on more productive things. A bug,
that is found in production is much more harmful to an organization than a bug found (ideally) in DEV-Environment or
in QA/Final QA-Stages. I’m not talking about the reputation of the organization - that’s a different story alltogether. No,
I’m talking about the fixing cost.

Chances are, the bug was created longer than 3 months ago. Maybe the developer isn’t here anymore, even if he is, he won’t
know the faulty code by heart, meaning he’ll have to spend some time figuring out, what’s wrong. These switching costs are
one of the main effort drivers for bug fixing costs.

Secondly - a production bug needs to be treated with priority. The assigned Developer will stash his current work, checkout
production code, reconfigure Dev-Environment. Depending on the IDE and the overall complexity, this might take only
a few minutes, but it adds to the overall costs.

Another important factor, that can cost days, weeks or months of additional effort is when fixing the bug needs
migrations for instance in already posted data. Separate functionalities need to be written to identify the effected
records, determine the correct values, the wrong value and decide, how to cope with the delta between those two. Such
situations can get messy and you wish you had chosen another career path, when in the middle of this.

How to improve the situation

Even when you have simple and easy to solve bugs from production, they still cost you more than when you had found them
in earlier stages. And there’s still this reputation thing with your users or customers.

To improve the situation you’ll definitely want to use realistic test data, if possible cases from production for your
regression tests and in most cases also for your progression tests. You’ll also move your focus from technichal aspects
of testing to pure business functionality. You’ll create many realistic test data combinations and let them run.

We once searched for quite some time for performance optimization possibilities until we found out, that the test case
itself was flawed. It produced a demand situation for a specific material that would never happen in a productive
system, because all the customer order tests were mainly ordering this one material number, when in reality the customer
had 10.000s of materials. Don’t be like our past. Be better.

Realistic testdata combinations might also mean, that you have to create multiple sets of realistic master data for your
test cases. Sometimes that’s hard, because masterdata might be maintained on a remote master system and you might not
have access to that. But it’s so worth the trouble in the long run.

It’s raining soup - with bugs

Once you’re in production your bug tickets are an invaluable source of wisdom, on how to improve testing. Majority of the
tickets will hopefully be about user errors, wrong passwords, unknown “Works as designed”-Situations, and things like that.

The remaining tickets are the gold. Dig them up (usually we’d have a JIRA-Filter and a classification in the defects),
look what came in since your last release and once fixed, analyse, how you can adjust your test set in order to avoid the
current and similar error situations. Look deep into the root cause of why this defect or error wasn’t discovered before.
Once you’re clear on the reasons (multiple reasons are very common, once you have a mature test set) add test data
combinations, that will detect those problems upfront.

If you follow this procedure I guarantee, that in 1-4 months you’ll see a sharp decline in production defects as
day by day and week by week you’ll catch more problems in previous stages and your production will become rock-stable.

baangt.TestCase package

Submodules

baangt.TestCase.TestCaseMaster module

	
class baangt.TestCase.TestCaseMaster.TestCaseMaster(executeDirect=True, **kwargs)

	Bases: object

	
execute()

	

	
executeTestCase()

	

	
tearDown()

	

Module contents

baangt.TestCaseSequence package

Submodules

baangt.TestCaseSequence.TestCaseSequenceMaster module

	
class baangt.TestCaseSequence.TestCaseSequenceMaster.TestCaseSequenceMaster(**kwargs)

	Bases: object

	
execute()

	

	
execute_parallel(parallelInstances)

	

	
getNextRecord()

	

	
prepareExecution()

	

	
tearDown()

	

baangt.TestCaseSequence.TestCaseSequenceParallel module

	
class baangt.TestCaseSequence.TestCaseSequenceParallel.TestCaseSequenceParallel(sequenceNumber: int, tcNumber: int, testcaseSequence=None, **kwargs)

	Bases: object

	
one_sequence(results: gevent._gevent_cqueue.Queue)

	

Module contents

baangt.TestSteps.DropsApp package

Submodules

baangt.TestSteps.DropsApp.Login_API module

	
class baangt.TestSteps.DropsApp.Login_API.Login_API(**kwargs)

	Bases: baangt.TestSteps.TestStepMaster.TestStepMaster

	
execute()

	Method is overwritten in all children/subclasses

Module contents

baangt.TestSteps package

Subpackages

	baangt.TestSteps.DropsApp package
	Submodules

	baangt.TestSteps.DropsApp.Login_API module

	Module contents

Submodules

baangt.TestSteps.Exceptions module

	
exception baangt.TestSteps.Exceptions.baangtTestStepException(*args, **kwargs)

	Bases: Exception

baangt.TestSteps.TestStepMaster module

	
class baangt.TestSteps.TestStepMaster.TestStepMaster(executeDirect=True, **kwargs)

	Bases: object

	
checkLinks()

	Will check all links on the current webpage

Result will be written into “CheckedLinks” in TestDataDict

If theres a returncode >= 400 in the list, we’ll mark the testcase as failed

	
doPDFComparison(lValue, lFieldnameForResults='DOC_Compare')

	

	
doSaveData(toField, valueForField, lLocatorType, lLocator)

	Save fields. Either from an existing DICT (usually in API-Mode) or from a Webelement (in Browser-Mode)

	Parameters

	
	toField –

	valueForField –

	lLocatorType –

	lLocator –

	Returns

	no return parameter. The implicit return is a value in a field.

	
execute()

	Method is overwritten in all children/subclasses

	
executeDirect(executionCommands)

	Executes a sequence of Commands. Will be subclassed in other modules.
:param executionCommands:
:return:

	
executeDirectSingle(commandNumber, command)

	This will execute a single instruction

	
static ifQualifyForExecution(version_global, version_line)

	This function will test version_global and version_line
@return True or False

	
replaceAllVariables(lValue, lValue2)

	

	
replaceVariables(expression)

	The syntax for variables is currently $(<column_name_from_data_file>). Multiple variables can be assigned
in one cell, for instance perfectly fine: “http://$(BASEURL)/$(ENDPOINT)”

There’s a special syntax for the faker module: $(FAKER.<fakermethod>).

Also a special syntax for API-Handling: $(APIHandling.<DictElementName>).

@param expression: the current cell, either as fixed value, e.g. “Franzi” or with a varible $(DATE)
@return: the replaced value, e.g. if expression was $(DATE) and the value in column “DATE” of data-file was

“01.01.2020” then return will be “01.01.2020”

	
teardown()

	

Module contents

baangt.base package

Submodules

baangt.base.ApiHandling module

	
class baangt.base.ApiHandling.ApiHandling

	Bases: object

	
getNewSession(sessionNumber=None)

	

	
getSession(sessionNumber=1)

	

	
getURL(url=None, sessionNumber=1)

	

	
postURL(url=None, content=None, sessionNumber=1)

	

	
static returnTestCaseStatus(status_code)

	

	
setBaseURL(url)

	

	
setEndPoint(endpoint)

	

	
setHeaders(sessionNumber=1, setHeaderData=None)

	

	
setLoginData(userName, password, sessionNumber=1)

	

	
tearDown(sessionNumber=None)

	

baangt.base.BrowserHandling module

baangt.base.CliAndInteractive module

	
baangt.base.CliAndInteractive.args_read(l_search_parameter)

	

	
baangt.base.CliAndInteractive.callTestrun(testRunFile)

	

	
baangt.base.CliAndInteractive.getGlobalSettings()

	

	
baangt.base.CliAndInteractive.print_args()

	

	
baangt.base.CliAndInteractive.run()

	

baangt.base.CustGlobalConstants module

baangt.base.ExportResults module

baangt.base.GlobalConstants module

baangt.base.HandleDatabase module

	
class baangt.base.HandleDatabase.HandleDatabase(linesToRead, globalSettings=None)

	Bases: object

	
readNextRecord()

	We built self.range during init. Now we need to iterate over the range(s) in range,
find appropriate record and return that - one at a time

@return:

	
readTestRecord(lineNumber=None)

	

	
read_excel(fileName, sheetName)

	

	
updateGlobals(record)

	

baangt.base.IBAN module

	
class baangt.base.IBAN.IBAN(bankLeitZahl='20151', bankLand='AT')

	Bases: object

	
getRandomIBAN()

	Generates a random IBAN based on bankLand and bankLeitzahl as well as a random account number

@return: gives a String of IBAN

baangt.base.TestRun module

baangt.base.TestRunExcelImporter module

	
class baangt.base.TestRunExcelImporter.TestRunExcelImporter(FileNameAndPath, testRunUtils: baangt.base.TestRunUtils.TestRunUtils)

	Bases: object

The TestrunSettings are in class TestRunUtils and expected to be a deep dict. For details see documentation there.

This class will migrate data from an excel sheet (either simple format with only 1 tab or complex format with all
structural elements) into the deep dict.

In case the XLSX is simple format, all missing data is “predicted”/assumed.

	
getRowsWithHeadersAsDict(xlsTab)

	

	
importConfig(global_settings)

	

	
replaceFieldValueWithValueOfConstant(value)

	baangt Global constants (baangt.base.GlobalConstants) are available everywhere as GC., e.g. the variable
“BROWSER” defined in GlobalConstants can be accessed from everywhere within baangt by using “GC.BROWSER”.

The variables can also be used in configuration files (would be very stupid if we need to change a constant and
then 100s of Config-Files need adjustment - worst case the testruns behave unexepected). This applies both to
XLSX and JSON Config files.

The CGC.-Part is still needs fixing. It shouldn’t appear in Baangt base, but currently still needed.

@param value: potentially convertable value (e.g. GC.BROWSER)
@return: potentially converted value (e.g. “Browser”)

baangt.base.TestRunUtils module

	
class baangt.base.TestRunUtils.TestRunUtils

	Bases: object

	
getCompleteTestRunAttributes(testRunName)

	

	
getSequenceByNumber(sequence, testRunName)

	

	
getTestCaseByNumber(sequence, testcaseNumber)

	

	
getTestStepByNumber(testCase, testStepNumber)

	

	
replaceClasses(testRunName, classes: baangt.base.TestRun.ClassesForObjects.ClassesForObjects)

	Apart from what is defined in the TestRunDefintion (XLSX or “guessed” by TestRunExcelImporter) the user
may give new class names in the globals file.

We shall replace all corresponding appearances with those new class names

	Parameters

	classes –

	Returns

	No return parameter. Changes are kept internally

	
replaceGlobals(globals)

	Will go through all testcase-Settings and replace values with values from global settings, if matched

	
setCompleteTestRunAttributes(testRunName: str, testRunAttributes: dict)

	

baangt.base.Timing module

baangt.base.Utils module

	
class baangt.base.Utils.utils

	Bases: object

	
static anything2Boolean(valueIn)

	

	
static datetime_return()

	

	
static dynamicImportOfClasses(modulePath=None, className=None, fullQualifiedImportName=None)

	Will import a class from a module and return the class reference

@param fullQualifiedImportName: Full name of Module and Class. Alternatively:
@param modulePath: Path to module and:
@param className: Name of the class inside the module
@return: The class instance. If no class instance can be found the TestRun aborts hard with sys.exit

	
static extractFileNameFromFullPath(fileAndPathName)

	

	
static findFileAndPathFromPath(fileNameAndPath, basePath=None)

	Tries different approaches to locate a file
lBasePath = the Path where the script is run

@param fileNameAndPath: Filename and potentially relative path
@param basePath (optional): Optional basePath to look at
@return:

	
static listToString(completeList)

	Returns a concatenated string from a list-object
:param completeList: any List
:return: String

	
static openJson(fileNameAndPath)

	

	
static replaceAllGlobalConstantsInDict(lDict: dict)

	

	
static replaceFieldValueWithValueOfConstant(value)

	If a String reference to global Constant (e.g. GC.BROWSER_FF) is
given, this function will replace it with the actual value (e.g. FIREFOX)

	
static sanitizeFileName(value)

	

	
static setLocatorFromLocatorType(lLocatorType, lLocator)

	@param lLocatorType: XPATH, CSS, ID, etc.
@param lLocator: Value of the locator
@return:

	
static setLogLevel(level)

	

Module contents

baangt.katalonImporter package

Submodules

baangt.katalonImporter.katalonImport module

	
class baangt.katalonImporter.katalonImport.Groovy

	Bases: object

	
add(groovyScript, path)

	

	
doReplacementOfLiterals(objects: baangt.katalonImporter.katalonImport.LocatorObjects)

	

	
class baangt.katalonImporter.katalonImport.LocatorObjects

	Bases: object

	
add(objectDefinition, path)

	

	
exportXLS(wsheet: xlsxwriter.worksheet.Worksheet)

	

	
class baangt.katalonImporter.katalonImport.TestCases

	Bases: object

	
add(testCase, path)

	

	
static decodeHex(string)

	

	
baangt.katalonImporter.katalonImport.doImport(importDir)

	

	
baangt.katalonImporter.katalonImport.exportResults()

	

	
class baangt.katalonImporter.katalonImport.fileHandling(fileNameAndPath, format='XML')

	Bases: object

	
logFileContentsHeader()

	

	
baangt.katalonImporter.katalonImport.readFile(fileNameAndPath)

	

	
baangt.katalonImporter.katalonImport.readXMLFile(fileNameAndPath)

	

	
baangt.katalonImporter.katalonImport.setupLogger()

	

	
class baangt.katalonImporter.katalonImport.translateGoovy(fileNameAndPath)

	Bases: baangt.katalonImporter.katalonImport.fileHandling

	
addTabs()

	Add Tab-Stop to each from Groovy converted Code-Line as this code runs under Method execute()

	
interpretGroovy()

	

	
static replaceGroovyLine(l_string)

	

	
replaceLiteralsWithLocators(locatorObjectClasses: baangt.katalonImporter.katalonImport.LocatorObjects)

	Replace the internal Katalon-Links with actual definitions

	
savePythonFile(saveAsClassName=None)

	

	
class baangt.katalonImporter.katalonImport.translateObjectDefinition(fileNameAndPath)

	Bases: baangt.katalonImporter.katalonImport.fileHandling

	
analyze()

	

	
outputAnalysis()

	

	
class baangt.katalonImporter.katalonImport.translateTestCase(fileNameAndPath)

	Bases: baangt.katalonImporter.katalonImport.fileHandling

	
findGroovyScript()

	

	
outputAnalysis()

	

Module contents

baangt.ui package

Submodules

baangt.ui.ImportKatalonRecorder module

	
class baangt.ui.ImportKatalonRecorder.ImportKatalonRecorder(directory)

	Bases: object

	
doTranslate(lineIn)

	

	
static doTranslateClick(locator)

	

	
static doTranslateLocator(locator, specialInstructions=None)

	

	
static doTranslateSelect(locator)

	

	
static doTranslateSubmit(locator)

	

	
static doTranslateType(locator, value)

	

	
static doTranslategoBackAndWait()

	

	
exportResult()

	

	
importClipboard()

	

	
static prepareKeyValue(outputData, key, value)

	This function will append key and value in
outputData
if variable key exist, it will rename by

key1, key2, …

	
saveTestCase()

	

	
saveTestCaseExecution(worksheet)

	

	
saveTestCaseHeader(worksheet)

	

	
saveTestData(worksheet)

	

	
static splitVariable(lines)

	
	This function will process each line and format the

	‘Value’ column in format $(variabe).

@output: list(lines), list(outputData)

	
writeCell(sheet, cellRow, cellCol, value, format=None)

	

baangt.ui.ui module

	
class baangt.ui.ui.UI

	Bases: object

Provides a simple UI for Testrun-Execution

	
getConfigFilesInDirectory()

	Reads JSON-Files from directory given in self.directory and builds 2 lists (Testrunfiles and ConfiFiles)

	
modifyValuesOfConfigFileInMemory(lValues)

	

	
readConfig()

	

	
readContentsOfGlobals()

	

	
saveConfigFileProcedure(lWindow, lValues)

	

	
saveContentsOfConfigFile(lFileName=None)

	

	
saveInteractiveGuiConfig()

	

Module contents

baangt module

baangtIA module

baangt

	baangt module

	baangt module

	baangtIA module

	setup module

	baangt.base package
	Submodules

	baangt.base.ApiHandling module

	baangt.base.BrowserHandling module

	baangt.base.CliAndInteractive module

	baangt.base.CustGlobalConstants module

	baangt.base.ExportResults module

	baangt.base.GlobalConstants module

	baangt.base.HandleDatabase module

	baangt.base.IBAN module

	baangt.base.TestRun module

	baangt.base.TestRunExcelImporter module

	baangt.base.TestRunUtils module

	baangt.base.Timing module

	baangt.base.Utils module

	Module contents

	baangt.TestCase package
	Submodules

	baangt.TestCase.TestCaseMaster module

	Module contents

	baangt.TestCaseSequence package
	Submodules

	baangt.TestCaseSequence.TestCaseSequenceMaster module

	baangt.TestCaseSequence.TestCaseSequenceParallel module

	Module contents

	baangt.TestSteps package
	Subpackages
	baangt.TestSteps.DropsApp package
	Submodules

	baangt.TestSteps.DropsApp.Login_API module

	Module contents

	Submodules

	baangt.TestSteps.Exceptions module

	baangt.TestSteps.TestStepMaster module

	Module contents

	baangt.katalonImporter package
	Submodules

	baangt.katalonImporter.katalonImport module

	Module contents

	baangt.ui package
	Submodules

	baangt.ui.ImportKatalonRecorder module

	baangt.ui.ui module

	Module contents

setup module

 nav.xhtml

 Table of Contents

 		
 Error

_images/screenshotBaangtIA.png
Path /Users/bernhardbuhlgit/baangt

TEEEEEEEEE——.
TestRun DropsTestRunDefinition.xlsx ~| B A A N G I
Settings globals.json ﬂ m

SETTINGS IN globals json

|exponFiIesBasePa(h |

|TC.Lines [
|TC.don(CIoseBrowser |True
|TC.sIowExecution |True

_images/thumbnailYoutube.png
baangt

Selenium Grid V4.0
Integration with baangt Demo on Docker.

_images/DataGeneratorInput.png
w e wn

[
Car 1
Bus

Truck

E c
| usage

| [Tax, Private, Corporate] 2
I[Corporate]

I[Corporate]

D E i} G 1 1 J [™M
Frequency Cov. sum "Excess [Cov. Type2, Cov. Type3, Cov. Typed] 6 Email Job
RND_[annual, quarterly, monthly] 3 RND_500000-1000000,100000 4 1100-1000,200 5 011 FKR_(email,EN_US)7 FKR_(job,EN_US)
RND_[annual, quarterly, monthly] RND_500000-1000000,100000 |[1000,300,500] 01 FKR_(email,EN_US 1) FKR_(job,DE)
RND_[annual, quarterly, monthly] RND_500000-1000000,100000 |[500,700,1000] 01 FKR_(email,DE,0) 8 FKR_(job,EN_US 8)
Customer
RRD_(Sheet2,Customer, [Age group:[30s,40s],Employment_status:[employed]]) 9

RRD_(Sheet2,Customer,[Age group:[60s] Employment_status:[employed, unemployed]])
RRD_(Sheet2,Customer,[Age group:[20s],Employment_status:[unemployed]])

_images/vncDesktopSeleniumGridDocker.png
7| root's X desktop (469825bdc2c8:1)

RA ‘

N
Skalieren

Fer ~ baangt Interactive Starter T -0 x

Katalon Studio Help
Il iangt/example

v s
“e BB (©)baangt

jlobal Jrid4.json

B e e

- 09-28 ﬁ

_static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

_static/down.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

